全局B样条拟合

本文探讨了全局B样条拟合在高维数据处理中的应用,强调了其在保持曲线连续性(如C1、C2)的同时,支持不同拟合条件,如给定数据点与误差或控制点个数。相较于插值,B样条拟合提供更平滑的曲线,但计算量较大且不确保通过所有数据点。示例比较了拟合与插值在数据点处理上的差异,展示了拟合在平滑度和控制点效率方面的优势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、问题描述

  对于给定的一系列任意维数的数据点(维数大于1),进行全局B样条拟合,使曲线满足一定连续性(C1、C2或更高阶连续),同时支持多种拟合条件:
  (1)给定数据点与拟合误差;
  (2)给定数据点与控制点个数

二、多种拟合条件

(1)给定数据点与拟合误差

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

(2)给定数据点与控制点个数

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

三、拟合对比插值的优缺点

(1)优点

  (1)拟合得到的曲线更加平滑(二阶导矢更小),给定的拟合误差越大,拟合得到曲线的二阶导矢越小,曲线越平滑。如下图,有序数据点分别由半径为20,10,5的圆弧离散化而来,分别对数据点进行3次B样条插值与3次B样条拟合(拟合误差取0.2)。可以看到,3次B样条插值则精确经过每一个数据点,但在圆弧连接处,二阶导矢波动较大;3次B样条拟合则精确经过起点与终点,但不保证经过其他数据点(拟合误差在0.2以内),在圆弧连接处,二阶导矢波动较小。
在这里插入图片描述在这里插入图片描述
在这里插入图片描述
  (2)B样条拟合相对于B样条插值,可能只需要更少的控制点与节点个数便可以表达大量的有序数据点。

(2)缺点

  (1)B样条拟合计算量更大(主要是矩阵乘法,而矩阵乘法时间复杂度大),且需要多次迭代计算。
  (2)B样条拟合不精确经过给定点(除了起点与终点),影响路径精度。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值