对 Lambda 架构问题的深入理解

感谢 GPT,对很多问题的理解有机会更深。

大家攻击 Lambda 架构,常说的一个点就是 “实时离线指标存在差异”。“实时离线指标存在差异”,是一个真实困扰运营方的问题吗?

答案:是的,这是一个真实生活中的痛点。

原因如下,特别是第一条,会让业务运营存在不确定性,为了应对这种不确定性,可能需要预留出业务余量,造成浪费。

  1. 实时数据偏差引发错误判断
    • 运营团队可能在实时看板上看到用户注册数为 900,以为目标还没达成,于是推送通知、加大预算。
    • 结果第二天离线数据跑完,真实注册是 1100,实际早就达成了。
    • 这会造成 资源浪费、判断误差。

  2. 数据不一致影响信任
    • 运营问:“实时看板显示新增 900,日报却说新增 1100,这是哪个错了?”
    • 数据团队解释:“实时数据有水位延迟、数据乱序、去重不完整……”
    • 非技术同学听不懂,久而久之就对系统失去信任。

  3. 多方依赖相同指标,版本不一致
    • 实时系统和离线系统往往使用不同代码、不同计算链路:
    • 实时:Kafka → Flink → Redis/ClickHouse
    • 离线:Hive/Spark → HDFS → 数据仓库
    • 一点小的业务逻辑差异、时间处理方式不同、清洗策略不同,就会让指标产生偏差。

在这里插入图片描述

附1:实时指标为什么可能不对?

答:因为 Flink 的计算有时间窗口的概念,比如:每个整点,计算上一个小时的销售额。因为队列延迟、网络出错、重试导致数据重复等原因,会让 Kafka 等队列中的数据不能完全被信任,上一个小时的数据不一定真的全了,可能有一些数据要等几分钟才到,也有可能永远不到。
为了解决这个问题,一般会延迟几分钟,等等跑慢了的数据。但也不能无限等下去。理论上总是可能有数据来晚了。

附2:批处理系统(离线) + 流处理系统(实时) + Serving 层合并结果为什么不准?

简而言之:因为实时数据不准确,那么 Serving 的到的数据肯定也不准确。

Lambda 架构:批处理系统(离线) + 流处理系统(实时) + Serving 层合并结果

我之前的疑问:Serving 层如何合并?如何保证离线+实时,得到准确的全量数据?
一般大家说得不到,原因就在于
(1)流处理系统拿到的数据可能是不准确的
(2)离线、实时数据的边界可能有模糊的地方。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值