DICOM医学影像应用篇——DICOM 医学影像中的去噪和增强技术

        

目录

去噪技术

1. 高斯滤波

概念与原理

数学公式

基于C++ 实现示例:

2. 中值滤波

概念与原理

基于C++ 实现示例:

3. 双边滤波

概念与原理

基于C++ 实现示例:

图像增强技术

1. 直方图均衡化

概念与原理

基于C++ 实现示例:

2. CLAHE(对比度受限自适应直方图均衡化)

概念与原理

基于C++ 实现示例:

总结


        DICOM(数字化医学影像与通信)标准用于存储和传输医学影像数据。在医学影像处理中,去噪和增强是两个重要的预处理步骤,可以提升图像质量,改善后续处理和诊断的准确性。本文将深入探讨去噪和增强的基本概念、原理,并提供基于C++的具体实现示例。

去噪技术

1. 高斯滤波

概念与原理

高斯滤波是一种线性平滑滤波器,用于减小图像中的高频噪声。其基本思想是通过卷积操作,将每个像素值替换为其邻域像素的加权平均值,高斯函数决定了权重分布。

数学公式

高斯函数:

加权卷积:

评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

猿享天开

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值