【人工智能数学基础—微积分】深入详解梯度与梯度下降:掌握梯度下降法及其变种及模型参数的优化

前言

        梯度下降(Gradient Descent)是机器学习和深度学习中最常用的优化算法之一,用于最小化损失函数,进而优化模型参数。理解梯度及其在梯度下降中的作用,对于掌握模型训练和优化至关重要。本文将深入探讨梯度与梯度下降的基本概念、数学原理、不同变种及其应用,并通过具体的示例代码帮助读者更好地理解和应用这些知识。

目录

  1. 引言
  2. 梯度的基本概念
  3. 梯度下降法
    • 3.1 批量梯度下降(Batch Gradient Descent)
    • 3.2 随机梯度下降(Stochastic Gradient Descent, SGD)
    • 3.3 小批量梯度下降(Mini-Batch Gradient Descent)
  4. 梯度下降的变种
    • 4.1 动量法(Momentum)
    • 4.2 Nesterov加速梯度(Nesterov Accelerated Gradient, NAG)
    • 4.3 AdaGrad
    • 4.4 RMSProp
    • 4.5 Adam
  5. 优化算法的选择与应用
  6. 示例代码
    • 6.1 实现基本梯度下降法
    • 6.2 使用Adam优化器的示例
  7. 结论
  8. 参考资料</
评论 69
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

猿享天开

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值