安装GPU版本的Pytorch

前言

Pytorch是深度学习框架,在工作中我们一般是使用GPU版本的Pytorch,提高运行效率

安装GPU版本的Pytorch需要先安装CUDA和CUANN这两个GPU环境

如果准备安装GPU版本的Pytorch安装同志没有安装CUDA和CUANN,请看我上一篇文章

RTX5070显卡安装CUDA和CUDNN-CSDN博客

目录

安装GPU版本的Pytorch

获取下载pytorch的命令

创建虚拟环境 

执行在pytorch官网获得的命令

 验证GPU版本的Pytorch安装是否成功


安装GPU版本的Pytorch

获取下载pytorch的命令

pytorch官网

Get Started

选择适版本匹配的pytorch

“Stable”表示稳定版本(通常推荐使用稳定版)
“Your OS”选择操作系统,如 Windows
“Package”选择包管理工具,如 pip 或 conda
“Language”选择 构建语言,选择python
“Compute Platform”选择对应的CUDA版本,这里我选择12.8。

拿到pytorch的安装命令

创建虚拟环境 

在开始菜单里面搜索prompt找到Anaconda prompt命令窗口打开

 创建conda虚拟环境并且指定这个虚拟环境的python版本

首选查看你的Anaconda支持的python版本

        conda search python

找到想要指定的python版本

创建虚拟环境

自定义虚拟环境的默认路径(可选) 

 我指定的是D:\environment\AnacondaEnvs文件夹管理我的虚拟环境

conda config --add envs_dirs 准备存放虚拟环境的目录

创建虚拟环境

conda create --name 虚拟环境名称 python=版本号

我创建的虚拟环境的名称是pytorch,指定python版本是3.13.1

我的Anaconda是支持3.13.1版本的,看自己Anaconda支持python版本的范围自己决定

查看刚才创建的虚拟环境

conda env list

进入到刚才创建的虚拟环境中,就是激活虚拟环境

conda activate 安装虚拟环境的路径(最后一个文件夹是虚拟环境的名称)

我这里进入我刚才创建的pytorch虚拟环境

执行在pytorch官网获得的命令

执行成功之后退出虚拟环境

conda deactivate

 验证GPU版本的Pytorch安装是否成功

使用pyCharam编译器指定pytorch虚拟环境创建一个项目

 创建项目名为MyPytorch,指定pytorch虚拟环境

 进入项目编写这几行代码

import torch

print(torch.__version__)
print(torch.version.cuda)
print(torch.cuda.is_available())
print(torch.cuda.get_device_name(0))

torch.__version__  是查看pytorch版本

torch.version.cuda 是查看pytorch使用的cuda版本

torch.cuda.is_available() 是判断是否使用的是GPU版本 True是 False否

torch.cuda.get_device_name(0)  是查看pytorch使用的GPU版本

 如果运行正常。   torch.cuda.is_available()是True

说明安装成功

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值