前言
Pytorch是深度学习框架,在工作中我们一般是使用GPU版本的Pytorch,提高运行效率
安装GPU版本的Pytorch需要先安装CUDA和CUANN这两个GPU环境
如果准备安装GPU版本的Pytorch安装同志没有安装CUDA和CUANN,请看我上一篇文章
目录
安装GPU版本的Pytorch
获取下载pytorch的命令
pytorch官网
选择适版本匹配的pytorch
“Stable”表示稳定版本(通常推荐使用稳定版)
“Your OS”选择操作系统,如 Windows
“Package”选择包管理工具,如 pip 或 conda
“Language”选择 构建语言,选择python
“Compute Platform”选择对应的CUDA版本,这里我选择12.8。
拿到pytorch的安装命令
创建虚拟环境
在开始菜单里面搜索prompt找到Anaconda prompt命令窗口打开
创建conda虚拟环境并且指定这个虚拟环境的python版本
首选查看你的Anaconda支持的python版本
conda search python
找到想要指定的python版本
创建虚拟环境
自定义虚拟环境的默认路径(可选)
我指定的是D:\environment\AnacondaEnvs文件夹管理我的虚拟环境
conda config --add envs_dirs 准备存放虚拟环境的目录
创建虚拟环境
conda create --name 虚拟环境名称 python=版本号
我创建的虚拟环境的名称是pytorch,指定python版本是3.13.1
我的Anaconda是支持3.13.1版本的,看自己Anaconda支持python版本的范围自己决定
查看刚才创建的虚拟环境
conda env list
进入到刚才创建的虚拟环境中,就是激活虚拟环境
conda activate 安装虚拟环境的路径(最后一个文件夹是虚拟环境的名称)
我这里进入我刚才创建的pytorch虚拟环境
执行在pytorch官网获得的命令
执行成功之后退出虚拟环境
conda deactivate
验证GPU版本的Pytorch安装是否成功
使用pyCharam编译器指定pytorch虚拟环境创建一个项目
创建项目名为MyPytorch,指定pytorch虚拟环境
进入项目编写这几行代码
import torch
print(torch.__version__)
print(torch.version.cuda)
print(torch.cuda.is_available())
print(torch.cuda.get_device_name(0))
torch.__version__ 是查看pytorch版本
torch.version.cuda 是查看pytorch使用的cuda版本
torch.cuda.is_available() 是判断是否使用的是GPU版本 True是 False否
torch.cuda.get_device_name(0) 是查看pytorch使用的GPU版本
如果运行正常。 torch.cuda.is_available()是True
说明安装成功