用训练好的模型测试单张图片存在的问题

用CNN做图像分类,在得到训练好的模型之后,往往会用caffe自带的classification.bin测试单张图片的分类结果,但是这会存在一些问题,下面我用caffe自带的Cifar10来分析。

训练得到Cifar10的网络模型
网上有很多博文,可以参考 学习笔记:Caffe上配置和运行Cifar10的示例

用单张图片测试训练好的模型

  • 利用classification.bin识别单张图片
cd caffe  #进入caffe目录
./build/examples/cpp_classification/classification.bin \
examples/cifar10/cifar10_quick.prototxt \  #网络结构描述文件
examples/cifar10/cifar10_quick_iter_5000.caffemodel.h5 \  #保存的网络模型
examples/cifar10/mean.binaryproto \  #数据集的均值文件
data/cifar/batches.meta.txt \  #分类标签文件
.../.../*.jpg  #测试图像

下载一张图片测试
这里写图片描述
注意:这里的图片要resize到32*32,例如

from PIL import Image
img = Image.open('dog.jpg')
image = img.resize((32, 32), Image.ANTIALIAS)
image.save('dog.jpg')

测试结果:

0.7372 - "dog"
0.1329 - "cat"
0.0622 - "deer"
0.0573 - "horse&
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值