Pandas中to_datetime()转换时间序列函数一文详解

本文详细介绍了Pandas中用于转换时间序列数据的to_datetime()函数,包括基本语法、参数说明和代码演示。文章涵盖arg、errors、dayfirst等多个参数的解释,并展示了如何处理日期解析顺序、时区转换等问题。通过实例展示了如何避免转换过程中的错误,提高数据处理效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


前言

由于在Pandas中经常要处理到时间序列数据,需要把一些object或者是字符、整型等某列进行转换为pandas可识别的datetime时间类型数据,方便时间的运算等操作。基于前两篇文章的基础:
一文速学-Pandas中DataFrame转换为时间格式数据与处理

一文速学-Pandas处理时间序列数据操作详解

 在这两篇文章中基本把pandas操作时间类型数据的一些常规操作都有提及和展示,作为重要相关函数to_datetime(),该函数参数值得单独拿出来讲一讲,可以省去很多转换之后的BUG错误。


目录

前言

一、基本语法与功能

二、参数说明和代码演示

1. arg

2.errors

 3.dayfirst

4.yearfirst

5.utc

6.format

7.exact

8.unit

9.infer_datetime_format

10.origin

 11.cache

三、返回类型

1.datetime

2.raises

ParserError

ValueError

点关注,防走丢,如有纰漏之处,请留言指教,非常感谢

### 回答1: pandas中的to_datetime()函数是将字符串或者数字转换成日期时间格式的函数。它可以将字符串、整数、浮点数等不同类型的数据转换成日期时间格式,并且可以自定义日期时间格式。to_datetime()函数pandas中非常常用的函数之一,可以方便地处理时间序列数据。 ### 回答2: pandasto_datetime()函数是一个将传入的日期字符串转换datetime类型的函数pandas这个包,给我们解决了很多数据清洗的问题,其中很多数据清洗都需要对日期或时间字段进行处理,因此pandas这个包非常适合数据处理。 这个函数pandas包中的引入,为我们日期和时间的处理带来了很大的便捷性,如果有很多数据要处理跟时间或日期有关的,to_datetime()函数能够把这些字段转化为pandas中的DatetimeIndex对象,它是一个高效的日期索引器。 当我们需要处理时间序列数据时,常用的方法是将日期字符转成pandas自带的时间戳索引,这样就方便了时间序列的切片、数据筛选等。 此外,to_datetime()函数还可以处理的日期格式非常丰富,我们可以在函数中传递一个格式字符串,指定日期字符串的格式,这时函数会根据我们指定的格式变换日期的数据类型;另外,to_datetime()函数还支持处理从网络获取的日期字符串,这些日期字符串可能包含时区信息,可以使用to_datetime()函数根据传入的参数进行时区的转换。 总之,to_datetime()函数pandas中是一个非常重要且常用的函数,可以方便地将日期字符串转换为可以处理的日期索引,可以更加方便地对时间序列数据进行处理和分析。 ### 回答3: pandas中的to_datetime()函数是用于将一个字符串或者日期格式的数据转化为pandas中的时间格式。对于数据分析的需求,经常需要对时间序列的数据进行处理和分析,将原始数据转化为pandas中的时间格式,可以更方便地进行时间序列数据的处理,例如对数据按照时间进行排序、切片、聚合、重采样等。 to_datetime()函数的主要参数有三个,分别是arg、format和infer_datetime_format。arg表示需要转化为时间格式的原始数据,可以是一个字符串或者一个数组,格式可以是多种多样的,包括标准的ISO8601时间格式,如“2019-04-01”、“2019-04-01 12:00:00”等,也可以是其他各种自定义格式的时间字符串。format表示需要使用的日期格式,可以使用Python中常用的日期格式,例如“%Y-%m-%d %H:%M:%S”等,也可以使用类似ISO8601时间格式的“yyyy-mm-dd”等。infer_datetime_format表示是否自动推导出日期格式,可以根据数据的情况自动推导出日期格式,也可以手动指定日期格式。 to_datetime()函数支持的数据类型包括pandas中的Series、DataFrame和Panel,可以对单个列或多个列进行转化。可以使用to_datetime()函数结合其他函数如fillna()、resample()、dt()等进行时间序列数据的处理和分析。需要注意的是,如果原始数据中存在非法的时间格式,to_datetime()函数会将其转化为NaT(Not a Time)格式。
评论 26
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

fanstuck

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值