一文速学数模-时序预测模型(三)移动平均模型(MA)详解+Python实例代码

本文深入探讨了移动平均模型(MA)的原理,包括模型定义、自相关系数及其Python实现。通过案例分析,展示了MA模型在时间序列预测中的应用,包括平稳性检验、差分和建模过程。同时,对比了MA与AR模型的差异,提供了相关参考资源。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

前言

一、移动平均模型(MA)

模型原理

自回归

 移动平均模型

自相关系数

常用的 MA 模型的自相关系数

通用:

 MA(1)模型:

 MA(2)模型:

自协方差函数

二、Python案例实现

平稳时间序列建模步骤

平稳性检验

输出内容解析:

补充说明:

MA预测模型

 消除趋势和季节性变化

差分Differencing

分解Decomposition

ACF自协方差和PACF偏自相关函数

模型建立

​编辑 MA与AR模型的对比

点关注,防走丢,如有纰漏之处,请留言指教,非常感谢

 参阅:



前言

有一段时间没有继续更新时间序列分析算法了,传统的时间序列预测算法已经快接近尾声了。按照我们系列文章的讲述顺序来看,还有四个算法没有提及:

平稳时间序列预测算法都是大头,比较难以讲明白。但是这个系列文章如果从头读到尾,细细品味研究的话,会发现时间序列预测算法从始至终都在做一件事,也就是如何更好的利用到历史数据,挖掘历史数据中蕴含的周期性规律或者是趋势。在看完这个系列的上述文章要理解平稳时间序列预测算法并不是一件难事,真正难的是原理和推导,以及实际起来运用方式,这是十分重要的。关键还是在于如何理解此类算法,好了就让我们开始一步一步完成此算法的推导以及代码编写到实际案例的运用。

博主会长期维护博文,有错误或者疑惑可以在评论区指出,感谢大家的支持。


一、移动平均模型(MA)

移动平均模型MA是和自回归模型AR多少是有点联系的,它并非是历史时序值的线性组合而是历史白噪声的线性组合。与AR最大的不同之处在于,AR模型中历史白噪声的