- 博客(11244)
- 资源 (21)
- 收藏
- 关注

原创 完整代码、论文复现及科研仿真定制事宜
1.3.2 各类车辆路径规划问题研究(vrp、VRPTW、CVRP)3.1.1 车牌、交通标志识别(新能源、国内外、复杂环境下车牌)3.1.5 字符识别(字母、数字、手写体、汉字、验证码)1.3.1 旅行商问题研究(TSP、TSPTW)1.3.4 无人机三维路径规划问题研究。3.1.2 发票、身份证、银行卡识别。3.1.7 花朵、药材、水果蔬菜识别。3.1.8 指纹、手势、虹膜识别。1.2.4 水库梯度调度研究。1.2.1 装配线调度研究。1.6.2 配电网系统优化。1.2.2 车间调度研究。
2023-09-27 09:31:31
209
1

原创 完整代码、论文复现、期刊合作、论文辅导及科研仿真定制事宜
✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。部分博客matlab代码已上传CSDN资源,点击博主博客主页->资源->搜索,订阅专栏领取各个专栏大礼包,适合新手和进阶者学习。更多Matlab仿真内容点击👇。🍊个人信条:格物致知。
2023-03-03 07:42:33
2502

原创 智能优化与机器学习结合算法实现时序数据预测matlab代码清单
涵盖卷积神经网络(CNN)、长短期记忆网络(LSTM)、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP神经网络、RBF神经网络、宽度学习等多种神经网络及智能算法优化神经网络matlab源码
2022-11-03 04:24:33
1036

原创 智能优化与机器学习结合算法实现数据分类matlab代码清单
涵盖卷积神经网络(CNN)、长短期记忆网络(LSTM)、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP神经网络、RBF神经网络等多种神经网络及智能算法优化神经网络matlab源码
2022-11-03 04:21:13
978

原创 智能优化与机器学习结合算法实现数据预测matlab代码清单
涵盖卷积神经网络(CNN)、长短期记忆网络(LSTM)、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP神经网络、RBF神经网络等多种神经网络及智能算法优化神经网络matlab源码
2022-11-03 04:18:24
912
原创 【风光不确定】基于多时间尺度滚动优化算法的主动配电网研究【IEEE33节点】附Matlab代码
主动配电网(Active Distribution Network, ADN)作为整合分布式能源(Distributed Energy Resources, DERs)的关键载体,已成为能源转型的核心环节。其中,风能和太阳能(风光)作为主流 DERs,具有清洁、可再生的优势,但受气象条件影响,其出力呈现显著的随机性、波动性和不确定性,给 ADN 的功率平衡、电压控制、设备安全运行带来严峻挑战。传统的单一时间尺度优化算法难以适应风光不确定性的动态变化:日前优化依赖提前 24 小时的预测数据,误差较大;
2025-07-18 11:34:32
242
原创 【多变量输入单步预测】基于Transformer的风电功率预测研究附Matlab代码
在全球能源转型加速推进的背景下,风能作为清洁可再生能源的重要组成部分,其装机容量持续增长。然而,风电功率受风速、风向、温度、湿度等多因素影响,具有强波动性和非线性特征,给电力系统的安全调度、电网稳定运行带来极大挑战。准确的风电功率预测是提升风能利用率、降低弃风率的关键技术支撑。多变量输入单步预测通过融合多种影响因素,对未来一个时刻的风电功率进行预测,能为电力系统提供精准的决策依据。
2025-07-18 11:33:47
361
原创 【负荷预测】基于Transform-KAN的负荷预测研究附Python代码
在电力系统负荷预测领域,精准捕捉数据中的时序依赖与非线性关系是提升预测精度的关键。Transformer 凭借其自注意力机制在全局时序特征提取上表现卓越,而 KAN(Kolmogorov-Arnold Network)在非线性关系建模上独具优势。将二者结合形成的 Transformer-KAN 模型,为复杂负荷预测场景提供了全新的解决方案。相关算法基础Transformer 算法。
2025-07-18 11:33:00
671
原创 【负荷预测】基于GRU-KAN的负荷预测研究附Python代码
在电力系统运行、能源规划等领域,负荷预测是保障系统稳定、提高能源利用效率的关键环节。随着人工智能技术的发展,多种神经网络模型被应用于负荷预测,其中基于 GRU-KAN 的负荷预测方法,凭借其在处理时序数据和非线性关系方面的独特优势,逐渐成为研究的新方向。相关算法基础GRU 算法GRU(门控循环单元)是在 LSTM 基础上简化而来的循环神经网络模型,它保留了 LSTM 处理长序列数据的能力,同时减少了参数数量,提高了计算效率。GRU 通过更新门和重置门两个门控机制来控制信息的流动。
2025-07-18 11:31:53
525
原创 【负荷预测】基于BiLSTM-Attention的负荷预测研究附Python代码
在能源管理、电力调度等领域,精准的负荷预测至关重要,它能为资源配置、电网规划等提供有力支持。而基于 BiLSTM-Attention 的负荷预测方法,凭借其独特的算法优势,成为当前该领域的研究热点。相关算法基础BiLSTM 算法BiLSTM 即双向长短期记忆网络,是在 LSTM(长短期记忆网络)基础上发展而来的。LSTM 通过门控机制有效解决了传统循环神经网络(RNN)在处理长序列数据时出现的梯度消失或梯度爆炸问题,能够较好地捕捉序列数据中的长期依赖关系。
2025-07-18 11:31:13
430
原创 【多微电网】基于粒子群优化算法的面向配电网的多微电网协调运行与优化附Matlab代码
随着分布式能源渗透率的提升,多微电网与配电网的协同运行成为解决可再生能源消纳、提升供电可靠性的核心技术。多微电网通过配电网实现功率交互,既能在孤岛模式下独立运行,又能联网参与系统调峰,但其复杂性(多主体、多约束、多目标)对协调优化提出了更高要求。粒子群优化(PSO)算法凭借收敛速度快、实现简单的优势,成为多微电网协调的有效工具。本文构建面向配电网的多微电网协调运行框架,设计改进 PSO 算法实现多目标优化,通过实验验证其在降低配电网网损、提升经济性与可靠性方面的优势。一、多微电网与配电网的协调运行机制。
2025-07-18 11:29:42
415
原创 【飞机能量-机动性(E-M)特性】飞机评估的最大转弯速度、最大可持续转弯速度和最大可持续载荷系数对应的真空速度附Matlab代码
飞机能量 - 机动性(Energy-Maneuverability, E-M)特性是衡量航空器在空战、规避等机动场景中性能的核心指标,其本质是通过能量状态(动能 + 势能)与机动性参数(转弯速度、载荷系数)的关联,评估飞机的战术优势。最大转弯速度(机动速度)、最大可持续转弯速度和最大可持续载荷系数对应的真空速度,是 E-M 特性评估的三大关键参数,直接决定了飞机在格斗中的占位能力与生存概率。本文从定义、计算方法、影响因素三方面系统解析这些参数,为飞机设计与战术评估提供量化依据。
2025-07-18 11:28:52
606
原创 基于遗传算法的微电网调度(风、光、蓄电池、微型燃气轮机)附Matlab代码
微电网作为整合分布式能源与负荷的小型能源系统,其高效调度依赖于多能源协同优化。风能、光伏发电的间歇性与波动性,需通过蓄电池储能与微型燃气轮机(MT)的灵活调节实现供需平衡。遗传算法(Genetic Algorithm, GA)凭借全局寻优能力与处理非线性约束的优势,成为解决含多能源微电网调度问题的有效工具。本文构建包含风、光、蓄电池、微型燃气轮机的微电网调度模型,设计基于遗传算法的优化策略,通过典型日场景验证其经济性与可靠性。一、微电网系统结构与调度目标1.1 系统组成与能量流。
2025-07-18 11:27:58
422
原创 基于双层优化的微电网系统规划设计方法附Matlab代码
规划设计是微电网系统核心技术体系之一。从分布式电源的综合优化 (组合优化、容量优化) 和分布式电源间的调度优化两个方面对其展开研究。根据分布式电源特性,提出了适用于并网型微电网系统和独立型微电网系统的双层优化规划设计模型。上层优化采用综合目标计算系统最优配置;下层优化采用混合整数线性规划算法 (MILP) 计算系统最优运行方案。运用所建立模型,分别针对并网型和独立型微电网系统作了案例计算,验证了所提方法的正确性。一、引言。
2025-07-18 11:26:59
215
原创 【PID优化】基于遗传算法的模糊PID控制器整定附Matlab代码
PID 控制器因结构简单、鲁棒性强,在工业控制(如温度、压力、转速控制)中应用广泛,但传统 PID 参数(比例系数 Kp、积分系数 Ki、微分系数 Kd)的整定依赖经验(如 Ziegler-Nichols 法),难以适应非线性、时变系统的动态特性。模糊 PID 控制器通过模糊逻辑动态调整 PID 参数,提升了适应性,但其模糊规则与隶属度函数的设计仍存在主观性。基于遗传算法的模糊 PID 整定,利用遗传算法的全局寻优能力优化模糊规则与 PID 参数,实现控制性能的进一步提升,成为复杂系统控制的有效方案。
2025-07-18 11:26:06
382
原创 【电路】基于最近电平逼近的开环MMC逆变器附Simulink仿真模型
一、引言在现代电力系统中,随着高压直流输电(HVDC)、新能源并网以及电机驱动等领域的快速发展,对电力变换设备的性能提出了更高要求。模块化多电平换流器(Modular Multilevel Converter,MMC)因其独特优势崭露头角。MMC 输出电压谐波含量低,能有效减少对电网的谐波污染;开关损耗小,提升了能源利用效率;扩展性强,便于根据实际需求灵活调整系统规模。
2025-07-18 11:25:03
297
原创 Transformer-LSTM 5模型多特征分类预测一键对比 (多输入单输出)附Matlab代码
基于Transformer-LSTM、Transformer、CNN-LSTM、LSTM、CNN五模型多特征分类预测一键对比多特征分类预测是从多个输入特征(如用户行为数据中的 “浏览时长 + 点击次数 + 地理位置”)中预测离散类别(如 “购买意愿高 / 中 / 低”)的核心技术,在故障诊断、用户画像、医疗诊断等领域应用广泛。Transformer-LSTM、Transformer、CNN-LSTM、LSTM、CNN 五种模型因对特征关联性的捕捉能力不同,在分类性能上呈现显著差异。
2025-07-18 11:23:53
641
原创 【双分解】CEEMDAN-VMD-牛顿拉夫逊NRBO-Transformer多变量时序预测 (多输入单输出) Matlab代码
多变量时序预测中,输入变量间的非线性耦合(如 “温度 × 湿度 × 气压” 对降水的协同影响)与数据的强非平稳性(如风电出力的随机波动)是核心挑战。双分解策略(CEEMDAN-VMD)通过两级模态分解可有效降低数据复杂度,牛顿拉夫逊改进的 NRBO 算法(NRBO-NR)能精准优化模型超参数,而 Transformer 的自注意力机制擅长捕捉多变量的长距离依赖。
2025-07-18 11:21:33
207
原创 黑翅鸳BKA-CNN-BiLSTM/CNN-BiLSTM/BiLSTM三模型单变量时间序列预测一键对比 Matlab代码
单变量时间序列预测(如单一传感器的温度监测、股票收盘价预测)虽输入维度简单,但需精准捕捉数据的自相关性及时序模式。黑翅鸳优化算法(BKA,模拟黑翅鸳的集群觅食行为)作为新兴元启发式算法,在模型超参数优化中表现出强全局寻优能力。本文针对 BKA-CNN-BiLSTM、CNN-BiLSTM、BiLSTM 三模型,设计单变量场景下的一键对比框架,通过统一 main 函数实现自动化训练、预测与指标输出,明确各模型在精度、效率上的差异,为单变量时序预测的轻量化选型提供依据。一、三模型的结构与核心差异。
2025-07-18 11:17:56
524
原创 【独家原创】基于五种算法优化CNN-BiLSTM-Attention的多变量时序预测8模型消融实验一键对比附Matlab代码
多变量时序预测的性能高度依赖模型对 “变量关联” 与 “时序依赖” 的捕捉能力,而优化算法与深度学习组件的组合方式是核心影响因素。本文针对 CPO 豪猪优化、NRBO 牛顿拉夫逊改进、FVIM、SSA 麻雀、GWO 灰狼优化的 CNN-BiLSTM-Attention 及其简化模型(共 8 模型),设计 “一键对比” 框架,通过统一的 main 函数实现模型训练、预测与指标输出,系统分析各模型在精度、效率、鲁棒性上的差异,为多场景预测任务提供选型指南。一、8 模型的结构与核心组件解析。
2025-07-18 11:13:42
113
原创 NRBO-VMD-SSA/NRBO/BKA-CNN-BiGRU-Attention(双优化)7模型多维时序预测一键对比
基于NRBO-VMD-SSA-CNN-BiGRU-Attention(双优化)、NRBO-VMD-NRBO-CNN-BiGRU-Attention(双优化)、NRBO-VMD-BKA-CNN-BiGRU-Attention(双优化)、NRBO-VMD-CNN-BiGRU-Attention、NRBO-VMD-CNN-BiGRU、NRBO-VMD-BiGRU七模型多变量时序预测一键对比。
2025-07-18 11:07:56
210
原创 【微电网调度】考虑需求响应的基于改进多目标灰狼算法的微电网优化调度研究 附Matlab代码
微电网优化调度需在平衡可再生能源波动性、保障供电可靠性的同时,实现经济性与环保性的协同优化。需求响应(Demand Response, DR)通过引导用户调整用电行为(如负荷转移、削减),可提升能源利用率并降低峰谷差,成为微电网灵活调度的关键手段。多目标灰狼算法(Multi-Objective Grey Wolf Optimizer, MOGWO)因收敛速度快、解多样性好,适合处理多目标调度问题,但传统 MOGWO 在高维约束(如需求响应的负荷调整限制)下易陷入局部最优。
2025-07-18 07:53:17
557
原创 【四轴飞行器】非线性三自由度四轴飞行器模拟器研究附Matlab代码
四轴飞行器因机动性强、结构紧凑,在航拍、巡检、物流等领域应用广泛,但其非线性强耦合的动力学特性给控制算法设计带来挑战。三自由度(俯仰角 θ、横滚角 φ、偏航角 ψ,忽略位置运动)模拟器可聚焦姿态控制核心问题,为非线性控制算法验证提供低成本平台。本文基于牛顿 - 欧拉方程构建非线性动力学模型,设计含扰动观测的 PID 控制算法,开发 Matlab/Simulink 模拟器,通过仿真验证其在姿态跟踪与抗干扰方面的性能。一、三自由度四轴飞行器动力学建模。
2025-07-18 07:50:49
589
原创 【模型】列车-轨道-桥梁交互仿真研究附Matlab代码
列车 - 轨道 - 桥梁系统的动态交互是高铁安全运营与结构设计的核心研究对象,其仿真模型需精准刻画多物理场耦合特性(力学、振动、接触)与多尺度响应(从轮轨接触的微米级变形到桥梁的米级位移)。本文聚焦交互仿真模型的构建方法,系统阐述列车多体动力学模型、轨道 - 桥梁有限元模型的建模细节与耦合机制,通过案例验证模型精度,为复杂场景下的动态响应分析与工程优化提供量化工具。一、子系统模型构建技术1.1 列车多体动力学模型。
2025-07-18 07:48:24
425
原创 【太阳能多级逆变器】具有较低的总谐波失真(THD),并采用了SPWM(正弦脉宽调制)技术研究附Simulink仿真
一、引言在太阳能光伏发电系统中,逆变器作为核心部件,承担着将直流电转换为交流电的关键任务。随着太阳能发电规模的不断扩大以及对电能质量要求的日益提高,太阳能多级逆变器应运而生。其相较于传统逆变器,能够输出多个不同电压等级,有效降低了总谐波失真(THD),在提升电能质量方面具有显著优势。正弦脉宽调制(SPWM)技术作为一种成熟且广泛应用的调制方法,在太阳能多级逆变器中发挥着关键作用,可精确控制逆变器输出波形,使其更接近理想正弦波,进一步优化了电能输出质量。
2025-07-18 07:46:35
362
原创 【多微电网】基于粒子群优化算法的面向配电网的多微电网协调运行与优化附Matlab代码
随着分布式能源渗透率的提升,多微电网与配电网的协同运行成为解决可再生能源消纳、提升供电可靠性的核心技术。多微电网通过配电网实现功率交互,既能在孤岛模式下独立运行,又能联网参与系统调峰,但其复杂性(多主体、多约束、多目标)对协调优化提出了更高要求。粒子群优化(PSO)算法凭借收敛速度快、实现简单的优势,成为多微电网协调的有效工具。本文构建面向配电网的多微电网协调运行框架,设计改进 PSO 算法实现多目标优化,通过实验验证其在降低配电网网损、提升经济性与可靠性方面的优势。一、多微电网与配电网的协调运行机制。
2025-07-17 16:39:51
234
原创 【风电功率预测】【多变量输入单步预测】基于RVM的风电功率预测研究附Matlab代码
在全球能源结构向清洁能源转型的浪潮中,风能作为一种可持续、无污染的能源,其开发利用规模持续扩大。然而,风电功率受风速、风向、气象条件等多种因素影响,呈现出显著的波动性和随机性,这给电力系统的安全稳定运行、调度规划以及电网的经济高效运作带来了巨大挑战。准确的风电功率预测是解决上述问题的关键环节。多变量输入单步预测通过综合考量影响风电功率的多种因素,对未来一个时刻的功率进行预测,能为电力系统的运行决策提供有力支持。
2025-07-17 16:37:14
691
原创 【多组消除谐波PWM双极波形的解决方案】两电平三相逆变器的选择性谐波消除PWM(SHEPWM))每四分之一周期具有3、5和7个开
在电力电子领域,两电平三相逆变器作为常用的电能转换装置,广泛应用于新能源发电、电机驱动等诸多场合。然而,其输出电压和电流中不可避免地含有谐波成分,这些谐波会导致电能质量下降、设备发热增加以及额外的功率损耗等问题。选择性谐波消除脉宽调制(SHEPWM)技术作为一种有效的谐波抑制手段,通过合理控制逆变器的开关时刻,能够针对性地消除特定次数的谐波,在降低谐波含量的同时减少开关损耗,提高系统效率。
2025-07-17 16:36:24
500
原创 【多变量输入单步预测】基于沙猫群优化算法(SCSO)优化CNN-BiLSTM-Attention的风电功率预测研究附Matlab
在全球能源转型的大趋势下,风能作为清洁、可再生能源的重要组成部分,其开发利用规模不断扩大。然而,风电功率受风速、风向、温度、湿度等多种因素影响,具有极强的波动性和随机性,这给电力系统的安全稳定运行、调度规划带来了巨大挑战。高精度的风电功率预测是解决风电并网难题、提高风电利用率、降低电力系统运行成本的关键,对促进风能的大规模开发利用具有重要意义。传统的风电功率预测方法存在诸多不足。物理方法基于气象数据和风机参数构建模型,计算复杂且依赖高精度气象数据;
2025-07-17 16:35:27
410
原创 【多变量输入单步预测】基于粒子群算法(PSO)优化CNN-BiLSTM-Attention的风电功率预测研究附Matlab代码
在全球能源结构向清洁化、低碳化转型的大背景下,风能作为重要的可再生能源,其装机容量持续快速增长。据统计,截至 2024 年底,全球风电累计装机容量已突破 10 亿千瓦,中国风电装机容量占比超过三分之一。但风电功率受风速、风向、空气密度等多种因素影响,呈现出强烈的波动性和不确定性。这不仅会导致电网频率波动、电压不稳定,还会增加电力系统的备用容量成本,严重制约了风电的大规模并网消纳。因此,开展高精度的风电功率预测研究,对于提高电力系统的安全性、经济性和风电的利用率具有至关重要的意义。
2025-07-17 16:34:39
464
原创 【多变量输入单步预测】基于BiTCN-LSTM的风电功率预测研究附Matlab代码
随着全球能源危机和环境问题的日益严峻,可再生能源的开发与利用受到了广泛关注。风能作为一种清洁、可再生的能源,具有储量大、分布广等优点,在全球能源结构中的占比不断提高。然而,风电功率具有很强的随机性、波动性和间歇性,这给电力系统的安全稳定运行、调度规划以及电网的接纳能力带来了巨大挑战。准确的风电功率预测能够为电力系统调度提供可靠的依据,有助于提高电网的运行效率和稳定性,降低发电成本,促进风能的大规模开发与利用。因此,开展高精度的风电功率预测研究具有重要的理论意义和实际应用价值。
2025-07-17 16:33:17
266
原创 【顶级EI复现】低温环境下考虑电池寿命的微电网优化调度附Matlab代码
微电网作为分布式能源消纳与能源安全保障的核心载体,在高纬度地区、高原寒区等低温环境中面临特殊挑战。低温不仅导致光伏、风电等可再生能源出力特性改变,更会显著影响储能电池的容量衰减速度与充放电效率,传统调度策略因未充分考虑电池寿命衰减机制,可能导致运行成本激增或供电可靠性下降。本文构建考虑低温电池寿命损耗的微电网优化调度模型,采用改进粒子群算法求解,通过典型低温场景验证模型的经济性与可靠性,为 EI 论文复现提供完整的理论框架与实验方案。一、低温环境对微电网的多维度影响机制1.1 可再生能源出力特性变化。
2025-07-17 16:30:07
239
原创 【电弧模型、故障】继电器触点开启时的电弧,电线上的电弧故障以及电极之间的高压电弧,使用ABCD矩阵提供新示例(使用状态空间表示法)附Matlab代码
电弧现象在电力系统、电气设备中普遍存在,其非线性、时变特性对设备寿命和系统安全构成显著威胁。继电器触点电弧、电线电弧故障、电极间高压电弧虽场景不同,但均涉及等离子体导电、能量转换的共性机制,同时各具独特的动态特性。本文基于 ABCD 矩阵(传输线模型)和状态空间表示法,构建三种电弧场景的数学模型,通过新示例揭示电弧的动态演化规律,为故障诊断与防护设计提供理论支撑。一、电弧的共性特征与建模基础。
2025-07-17 16:28:12
343
原创 【车间调度】基于卷积神经网络的两阶段算法求解柔性作业车间调度问题附Matlab代码
柔性作业车间调度问题(Flexible Job Shop Scheduling Problem, FJSP)是制造业生产优化的核心难题,其核心是在多台可用机器中为每个工序选择加工设备(机器选择),并确定每台机器上的工序加工顺序(工序排序),最终实现最大完工时间(Makespan)最小化。传统优化算法(如遗传算法、粒子群优化)在大规模问题(如 100 个工件、20 台机器)中存在收敛慢、易陷入局部最优等问题。
2025-07-17 16:24:56
582
原创 【参数估计】使用扩散粒子滤波器网络对单位球面进行协同参数估计附Matlab代码
在传感器网络、无人机编队、天文观测等领域,常需对单位球面上的参数(如目标方向、姿态角、天体位置)进行协同估计。单位球面的几何特性(如周期性、非欧氏距离度量)使参数估计面临独特挑战,而单一节点的观测噪声、观测范围有限等问题进一步增加了估计难度。扩散粒子滤波器(Diffusion Particle Filter, DPF)网络通过分布式节点的信息交互与协同处理,能在保持各节点自主性的同时提升估计精度,成为解决单位球面协同参数估计的有效方案。
2025-07-17 16:22:19
611
原创 【避障】约束驱动的紧急蜂群和捕食者回避的最优控制附Matlab代码
在群体机器人、无人机蜂群等领域,紧急情况下的避障控制是保障系统安全的核心技术。当蜂群面临捕食者(如敌方无人机)威胁或突发障碍(如突发天气、临时禁飞区)时,需在满足个体运动约束、群体协作约束的前提下,快速规划出避障路径,实现整体最优规避。本文基于约束驱动框架,构建紧急蜂群与捕食者回避的最优控制模型,通过分层优化策略平衡避障安全性、群体一致性与控制效率,为动态复杂环境下的群体避障提供解决方案。一、紧急避障场景的约束建模。
2025-07-17 16:19:03
439
原创 【栅格地图路径规划】基于人工旅鼠算法(Artificial Lemming Algorithm, ALA)的移动机器人路径规划MATLAB代码
移动机器人在复杂环境中的自主导航依赖于高效的路径规划算法,栅格地图因建模简单、易于实现而成为主流环境表示方法。人工旅鼠算法(Artificial Lemming Algorithm, ALA)借鉴自然界旅鼠的群体迁徙与协作行为,通过个体局部决策与群体信息共享,在栅格地图中展现出强鲁棒性与全局搜索能力。本文系统阐述 ALA 在移动机器人路径规划中的应用,从算法原理、栅格环境适配到实验验证,构建完整的路径规划方案,为复杂障碍物场景提供高效解决方案。一、栅格地图路径规划的核心挑战。
2025-07-17 13:04:22
523
原创 求解多起点多终点无人机集群路径规划的部落竞争与成员合作算法(CTCM),可以自定义无人机个数及起始点,MATLAB代码
在物流配送、灾害救援、环境监测等领域,多无人机协同作业往往需要根据任务需求灵活调整无人机数量及起始点。例如,在城市快递配送中,可能需要从 3 个不同的配送中心调度 8 架无人机;在山区搜救时,需从 2 个基地部署 5 架无人机。这种自定义场景给协同路径规划带来了诸多挑战,而部落竞争与成员合作算法(CTCM)凭借其独特的 “竞争 - 合作” 机制,能高效应对这些挑战,为多无人机规划出安全、高效的协同路径。一、自定义场景下多无人机协同路径规划的挑战1.1 动态规模下的路径组合复杂性。
2025-07-17 12:27:30
728
原创 【独家原创】基于(BO)Bayes-Transformer-LSTM多变量时序预测(多输入单输出)附Matlab
在多变量时序预测领域,如何平衡模型复杂度与预测精度、提升参数优化效率,是实际应用中的核心难题。Transformer-LSTM 虽能融合全局关联与局部时序建模优势,但超参数(如注意力头数、LSTM 隐藏层节点数)的手动调参耗时且难以最优;贝叶斯优化(Bayesian Optimization, BO)凭借概率建模与全局寻优能力,为超参数自动优化提供了新思路。
2025-07-17 11:55:52
264
原创 基于Transformer-LSTM、Transformer、CNN-LSTM、LSTM、CNN五模型多变量回归预测一键对比 Matlab代码
多变量回归预测是从多个输入变量中预测连续输出值的关键技术,在金融风控、工业参数预测、环境监测等领域应用广泛。Transformer-LSTM、Transformer、CNN-LSTM、LSTM、CNN 五种模型因在时序建模与特征提取上的差异化优势,成为回归任务的主流选择。本文构建 “一键对比” 框架,系统评估五模型在多变量回归场景中的性能,为模型选型提供全面参考。一、五模型核心原理与结构差异1.1 基础时序模型:LSTM。
2025-07-17 11:52:47
454
【配置c / c++环境】相关内容的VIP资源,包括但不限于环境配置实操教程、常见问题+详解等 标题/简介不少于20字
2025-06-08
【配置c / c++环境】相关内容的VIP资源,包括但不限于环境配置实操教程、常见问题+详解等 标题/简介不少于20字
2025-06-08
【配置c / c++环境】相关内容的VIP资源,包括但不限于环境配置实操教程、常见问题+详解等 标题/简介不少于20字
2025-06-08
【配置c / c++环境】相关内容的VIP资源,包括但不限于环境配置实操教程、常见问题+详解等 标题/简介不少于20字
2025-06-08
【配置c / c++环境】相关内容的VIP资源,包括但不限于环境配置实操教程、常见问题+详解等 标题/简介不少于20字
2025-06-08
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人