【车间调度】基于遗传算法求解车间调度问题(含甘特图)附matlab代码

该博客介绍了一个利用MATLAB实现的遗传算法解决经典NP-hard问题——作业车间调度(JobShopScheduling)。作者分享了一段可运行的MATLAB代码,用于创建和优化调度排序,同时绘制进化图和甘特图。内容包括问题定义、算法主程序及部分代码展示,并引用了相关文献。关注作者可获取更多MATLAB仿真资源。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法  神经网络预测 雷达通信  无线传感器

信号处理 图像处理 路径规划 元胞自动机 无人机  电力系统

⛄ 内容介绍

作业车间调度问题(Job Shop Scheduling, JSP)是最经典的几个NP-hard问题之一。其应用领域极其广泛,涉及航母调度,机场飞机调度,港口码头货船调度,汽车加工流水线等。JSP问题描述:一个加工系统有M台机器,要求加工N个作业,其中,作业i包含工序数为Li。令,则L为任务集的总工序数。其中,各工序的加工时间已确定,并且每个作业必须按照工序的先后顺序加工。调度的任务是安排所有作业的加工调度排序,约束条件被满足的同时,使性能指标得到优化。

遗传算法是一种应用领域很广,解决问题效果较好的一种启发式算法,在解决调度问题中有很好的作用。用matlab程序解决作业车间调度问题的小例子,程序可运行,可画出进化图与甘特图。内附算例与程序说明。

⛄ 部分代码

%算法主程序

function GA4JSP205()

    clc;clear;

    %决定编码的主程序n*m,从1、2、、、n出现m次

    %dt=initDataFT06();%初始化数据

    dt=initDataFT10();

    [rows,cols]=size(dt);

    jobQty=rows;%作业数量

    machQty=cols/2;%机器数量

    pop=80;%群体规模

    chromes=createChromes(jobQty,machQty,pop);%初始化种群

    %种群第一代

    chrome1=chromes(1,:);

    sch=createSchedule(dt,chrome1);

    finishT=fitness(sch);

⛄ 运行结果

⛄ 参考文献

[1]于善, 袁逸萍, 李晓娟,等. MATLAB下基于遗传算法作业车间调度系统开发[J]. 机械工程与自动化, 2015(6):4.

[2]谢胜利, 董金祥, 黄强. 基于遗传算法的车间作业调度问题求解[J]. 计算机工程与应用, 2002, 38(10):4.

❤️ 关注我领取海量matlab电子书和数学建模资料

❤️部分理论引用网络文献,若有侵权联系博主删除

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值