【热力学】切向进气同心圆柱内旋流流动和传热的实验研究附matlab代码

本文详细描述了一项使用Matlab进行的实验,研究了切向进气如何影响同心圆柱内旋流流动的速度、温度分布以及湍流特性。实验结果表明,雷诺数和普朗特数对这些特性有显著影响,为相关工程应用提供了关键数据。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机 

🔥 内容介绍

本文介绍了切向进气同心圆柱内旋流流动和传热的实验研究。通过实验测量了不同雷诺数和普朗特数下流体的速度、温度和湍流特性。结果表明,切向进气产生了强烈的旋流流动,其速度和温度分布具有显著的非对称性。湍流特性受雷诺数和普朗特数的影响较大,湍流强度和涡量随着雷诺数的增加而增加.

同心圆柱内旋流流动是一种重要的流体力学现象,广泛应用于热交换器、燃烧器和涡轮机等工程领域。切向进气是增强旋流流动和传热的一种有效方法。本文通过实验研究了切向进气同心圆柱内旋流流动和传热的特性,为该类流动的工程应用提供了基础数据。

通过实验研究了切向进气同心圆柱内旋流流动和传热的特性,得到了以下结论:

  • 切向进气产生了强烈的旋流流动,其速度和温度分布具有显著的非对称性。

  • 湍流特性受雷诺数和普朗特数的影响较大,湍流强度和涡量随着雷诺数的增加而增加。

  • 本文的研究结果为该类流动的工程应用提供了基础数据。

📣 部分代码

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Title:            EgregiousDataPadding.m% Description:      Script for calculating the temperature homogeneity;%                   the dimensionless Nusselt and Reynolds numbers; and the%                   required power for achieving specific flow conditions.%                   Results are saved in the file results.txt%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Acquire file path and set it as current directory % Returns the full path of the current script folder = fileparts( which(mfilename) ); % Adds all subdirectories addpath( genpath(folder) );%% Data input tic;                            % timing the script dInner = 22 * 10 ^ -3;          % inner cylinder diameter, [m]dOuter = 40 * 10 ^ -3;          % outer cylinder diameter, [m]voltRes = 29.5;                 % voltage of resistance, [V]ampRes = 0.63;                  % current of reistance, [A]position = 0.05:0.1:0.9;        % axial positions of thermocouples, [m]subsystems = 0:0.1:0.9;         % nine subsystems of control volume tempData = zeros(11, 4, 17);    % steady-state temperature measurements, [degree Celsius]                                % columns 1-9: resistance temperature along axial coordinate                                 % column 10: inlet temperature                                 % column 11: outlet temperature                                 timeData = zeros(1, 4, 17);     % time, [sec]voltFan = zeros(1, 4, 17);      % voltage of fan, [V]ampFan  = zeros(1, 4, 17);      % current of fan, [A]c = 0;% Data input for swirling-decaying flow for j = 45:15:90    for i = 1:4        c = c + 1;        data = importdata(+j+"Degrees"+i+"inlets.csv");                % Temperature measurements ​ce(Nusselt(:, i, k), NusseltErr(:, i, k));                NusseltAvg(1, i, k) = wmean;        NusseltAvgErr(1, i, k) = sqrt(1 / sum(weights));    end        reynolds = Reynolds(1, :, k);    reynoldserr = ReynoldsErr(1, :, k);        nusselt = NusseltAvg(1, :, k);    nusselterr = NusseltAvgErr(1, :, k);        [cc, cerrr, statt] = LeastSquaresFit(reynolds, nusselt,...        reynoldserr, nusselterr, 'power');        % Plotting limits (horizontal axis)     rFit = linspace(1000, 2000, 1000);    % Power values     nFit = cc(1) * rFit .^ cc(2);        % Visualisations     if k <= 4        a = k;        handles(1).hE{k} = errorbar(handles(1).hAxes{1}, reynolds, nusselt,...                         nusselterr, nusselterr, reynoldserr,...                         reynoldserr, '*', 'Color', colorsErr(a, :) / 255);        handles(1).hP{k} = plot(handles(1).hAxes{1}, rFit, nFit, '-', 'Color',...                          colorsFit(a, :) / 255);    elseif (k > 4) && (k <= 8)        a = k - 4;        handles(1).hE{k} = errorbar(handles(1).hAxes{2}, reynolds, nusselt,...                         nusselterr, nusselterr, reynoldserr,...                         reynoldserr, '*', 'Color', colorsErr(a, :) / 255);        handles(1).hP{k} = plot(handles(1).hAxes{2}, rFit, nFit, '-', 'Color',...                          colorsFit(a, :) / 255);               elseif (k > 8) && (k <= 12)        a = k - 8;        handles(1).hE{k} = errorbar(handles(1).hAxes{3}, reynolds, nusselt,...                         nusselterr, nusselterr, reynoldserr,...                         reynoldserr, '*', 'Color', colorsErr(a, :) / 255);        handles(1).hP{k} = plot(handles(1).hAxes{3}, rFit, nFit, '-', 'Color',...                          colorsFit(a, :) / 255);       elseif (k > 12) && (k <= 16)        a = k - 12;        handles(1).hE{k} = errorbar(handles(1).hAxes{4}, reynolds, nusselt,...                         nusselterr, nusselterr, reynoldserr,...                         reynoldserr, '*', 'Color', colorsErr(a, :) / 255);        handles(1).hP{k} = plot(handles(1).hAxes{4}, rFit, nFit, '-', 'Color',...                          colorsFit(a, :) / 255);    else        for i = 1:4            a = 16 + i;            handles(1).hE{a} = errorbar(handles(1).hAxes{i}, reynolds,...                         nusselt, nusselterr, nusselterr, reynoldserr,...                         reynoldserr, '*', 'Color', colorsErr(5, :) / 255);      % end code timer runningTime = toc;%% Save results in results.txtres = fopen('results.txt', 'w'); disp('Results printed in the file: results.txt ');fprintf(res, 'Analysis output report, written on %s\n', datetime('now'));fprintf(res, 'Elapsed time: %4.2f seconds \n \n', runningTime);fprintf(res, 'Results are printed in a way that greatly simplifies their implementation in a LaTeX table \n \n');latextbl2 = [stats(2).c(:, 1) .* 10e-10 stats(2).cerr(:, 1) .* 10e-10 stats(2).c(:, 2) stats(2).cerr(:, 2) stats(2).stat(:, 1)];latextbl = [latextbl1 latextbl2];fprintf(res, '------------------------------------------------------ \n');fprintf(res, 'Power fit curves for Nu = aRe^b and P = aQ^b; columns: a ua b ub r^2 \n \n');fprintf(res, '%5.2f & %5.2f & %5.2f & %5.2f & %5.4f && %5.2f & %5.2f & %5.2f & %5.2f & %5.4f \\\\ \n', latextbl');fprintf(res, '\n');latexnu = zeros(4, length(nussavg(1:4, 1)) * 2);latexpw = zeros(4, length(pwavg(1:4, 1)) * 2);c = 0;for i = 1:4        if i == 1    else    c = c + 4;    end       latexpw(i, 1:2:end-1) = pwavg(1+c:4+c, 1);   latexpw(i, 2:2:end) = pwavg(1+c:4+c, 2);   latexnu(i, 1:2:end-1) = nussavg(1+c:4+c, 1);   latexnu(i, 2:2:end) = nussavg(1+c:4+c, 2);endfprintf(res, '------------------------------------------------------ \n');fprintf(res, 'Average Nusselt numbers; rows: angle degrees, columns: number of inlets\n \n');fprintf(res, '& %5.2f & %5.2f && %5.2f & %5.2f && %5.2f & %5.2f && %5.2f & %5.2f \\\\ \n', latexnu');fprintf(res, '\n');% Print results in way a LaTeX-friendly wayfprintf(res, '------------------------------------------------------ \n');fprintf(res, 'Average Power values; rows: angle degrees, columns: number of inlets\n \n');fprintf(res, '& %5.2f & %5.2f && %5.2f & %5.2f && %5.2f & %5.2f && %5.2f & %5.2f \\\\ \n', latexpw');fprintf(res, '\n');latextbl = [nuss(:, 1) nusserr(:, 1) nuss(:, 2) nusserr(:, 2) nuss(:, 3) nusserr(:, 3) nuss(:, 4) nusserr(:, 4)];fprintf(res, '------------------------------------------------------ \n');fprintf(res, 'Thermal improvement index; rows: angle degrees, columns: number of inlets\n \n');fprintf(res, '& %5.2f & %5.2f && %5.2f & %5.2f && %5.2f & %5.2f && %5.2f & %5.2f \\\\ \n', latextbl');fprintf(res, '\n');latextbl = [power(:, 1) powererr(:, 1) power(:, 2) powererr(:, 2) power(:, 3) powererr(:, 3) power(:, 4) powererr(:, 4)];fprintf(res, '------------------------------------------------------ \n');fprintf(res, 'Power improvement index; rows: angle degrees, columns: number of inlets \n \n');fprintf(res, '& %5.2f & %5.2f && %5.2f & %5.2f && %5.2f & %5.2f && %5.2f & %5.2f \\\\ \n', latextbl');% Print results in way a LaTeX-friendly waylatextbl = [therm(:, 1) thermerr(:, 1) therm(:, 2) thermerr(:, 2) therm(:, 3) thermerr(:, 3) therm(:, 4) thermerr(:, 4)];fprintf(res, '------------------------------------------------------ \n');fprintf(res, 'Potential efficiency index; rows: angle degrees, columns: number of inlets \n \n');fprintf(res, '& %5.2f & %5.2f && %5.2f & %5.2f && %5.2f & %5.2f && %5.2f & %5.2f \\\\ \n', latextbl');fclose(res);

⛳️ 运行结果

🔗 参考文献

[1] 田文栋,魏小林,黎军,等.内旋流流化床埋管传热热态实验研究[C]//中国工程热物理学会传热传质学学术会议.中国工程热物理学会, 1999.

[2] 许都纯,徐红洲.单孔射流与主流相互作用时的流动和传热的实验研究[J].西北工业大学学报, 1997, 15(2):8.DOI:JournalArticle/5aedfa75c095d710d410adb6.

[3] 赵枚.动载作用下管内流动水沸腾传热实验研究[J].南京航空航天大学, 2008.DOI:10.7666/d.d053182.

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化
2 机器学习和深度学习方面

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值