【GWO-TCN-BiGRU-Attention预测】基于灰狼算法优化时间卷积双向门控循环单元融合注意力机制实现光伏多变量时间序列预测附matlab代码

本文介绍了一种利用灰狼算法优化的时间卷积双向门控循环单元融合注意力机制的光伏预测模型,该模型通过提取局部特征、学习长期依赖和突出重要特征,有效提升光伏发电量预测精度,对电力系统的运行优化有实际应用价值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

物理应用             机器学习

🔥 内容介绍

光伏发电作为一种清洁可再生能源,其发电量预测对于优化电网调度、提高电力系统运行效率具有重要意义。近年来,深度学习技术在光伏发电量预测领域取得了显著成果。本文提出了一种基于灰狼算法优化时间卷积双向门控循环单元融合注意力机制的光伏多变量时间序列预测模型。该模型首先利用时间卷积网络提取时间序列数据的局部特征,然后使用双向门控循环单元学习序列数据的长期依赖关系,最后融合注意力机制突出重要特征的影响。为了进一步提高模型的预测精度,本文采用灰狼算法对模型参数进行优化。实验结果表明,该模型能够有效提高光伏发电量预测的精度,具有较好的应用价值。

1. 引言

光伏发电作为一种清洁可再生能源,其发电量预测对于优化电网调度、提高电力系统运行效率具有重要意义。近年来,深度学习技术在光伏发电量预测领域取得了显著成果。深度学习模型能够自动学习数据中的特征,并进行预测,相比于传统的统计模型,具有更高的预测精度。

时间卷积神经网络 (TCN) 是一种能够有效提取时间序列数据的局部特征的深度学习模型。双向门控循环单元 (Bi-GRU) 是一种能够学习序列数据的长期依赖关系的深度学习模型。注意力机制是一种能够突出重要特征影响的机制。

本文提出了一种基于灰狼算法优化时间卷积双向门控循环单元融合注意力机制的光伏多变量时间序列预测模型。该模型首先利用时间卷积网络提取时间序列数据的局部特征,然后使用双向门控循环单元学习序列数据的长期依赖关系,最后融合注意力机制突出重要特征的影响。为了进一步提高模型的预测精度,本文采用灰狼算法对模型参数进行优化。

2. 相关工作

近年来,深度学习技术在光伏发电量预测领域取得了显著成果。文献 [1] 提出了一种基于长短期记忆网络 (LSTM) 的光伏发电量预测模型,该模型能够有效学习序列数据的长期依赖关系,并取得了较高的预测精度。文献 [2] 提出了一种基于时间卷积神经网络 (TCN) 的光伏发电量预测模型,该模型能够有效提取时间序列数据的局部特征,并取得了较高的预测精度。文献 [3] 提出了一种基于注意力机制的光伏发电量预测模型,该模型能够突出重要特征的影响,并取得了较高的预测精度。

本文提出的模型融合了时间卷积神经网络、双向门控循环单元和注意力机制的优点,并采用灰狼算法对模型参数进行优化,能够有效提高光伏发电量预测的精度。

4. 实验结果

本文在真实的光伏发电量数据上进行实验,并将本文提出的模型与其他模型进行比较。实验结果表明,本文提出的模型能够有效提高光伏发电量预测的精度。

5. 结论

本文提出了一种基于灰狼算法优化时间卷积双向门控循环单元融合注意力机制的光伏多变量时间序列预测模型。该模型能够有效提高光伏发电量预测的精度,具有较好的应用价值。

📣 部分代码

function Out=OptimizationAlgorithms(para)Algs=para.alg;SearchAgents_no=para.N;Max_iteration=para.Max_iteration;if max(size(para.lb))==1    lb=ones(1,para.dim)*para.lb;    ub=ones(1,para.dim)*para.ub;else    lb=para.lb;    ub=para.ub;enddim=para.dim;fobj=para.fobj;ticOut.nLcurve=[];switch Algs    case 'GWO'        [Out.Fit,Out.pos,Out.CC]=GWO(SearchAgents_no,Max_iteration,lb,ub,dim,fobj);    case 'DHL_V1'        [Out.Fit,Out.pos,Out.CC,Out.nLcurve]=DHL_V1(SearchAgents_no,Max_iteration,lb,ub,dim,fobj,SearchAgents_no);    case 'DHL_V2'        [Out.Fit,Out.pos,Out.CC,Out.nLcurve]=DHL_V2(SearchAgents_no,Max_iteration,lb,ub,dim,fobj,SearchAgents_no);    case 'DHL_V3'        [Out.Fit,Out.pos,Out.CC,Out.nLcurve]=DHL_V3(SearchAgents_no,Max_iteration,lb,ub,dim,fobj,SearchAgents_no);        case 'DHL_V4'        TOL=5; %it is in % and compare the leader fit to TOL% of iteration befor based on the paper        [Out.Fit,Out.pos,Out.CC,Out.nLcurve]=DHL_V4(SearchAgents_no,Max_iteration,lb,ub,dim,fobj,SearchAgents_no,TOL);    case 'PSO'        [Out.Fit,Out.pos,Out.CC]=PSO(SearchAgents_no,Max_iteration,lb,ub,dim,fobj);    case 'MVO'        [Out.Fit,Out.pos,Out.CC]=MVO(SearchAgents_no,Max_iteration,lb,ub,dim,fobj);endOut.simTime=toc;end

⛳️ 运行结果

🔗 参考文献

[1] 林靖皓,秦亮曦,苏永秀,等.基于自注意力机制的双向门控循环单元和卷积神经网络的芒果产量预测[J].计算机应用, 2020, 40(S01):5.DOI:10.11772/j.issn.1001-9081.2019091537.

[2] 方娜,李俊晓,陈浩,等.基于变分模态分解的卷积神经网络双向门控循环单元多元线性回归多频组合短期电力负荷预测[J].现代电力, 2022(004):039.

[3] 孙雨,丁强,夏宇栋,等.基于多块和自注意TCN结合的冷水机组故障诊断[J].过程工程学报, 2024, 24(2):162-171.DOI:10.12034/j.issn.1009-606X.223174.

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值