✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
齿轮箱作为机械设备的重要组成部分,其振动信号分析和故障诊断对于设备运行安全和可靠性至关重要。本文基于小波分解和Welch法,对齿轮箱振动信号进行分析和故障诊断。
1. 小波分解
小波分解是一种时频分析方法,能够有效地提取信号的局部特征。本文采用离散小波变换(DWT)对齿轮箱振动信号进行分解,得到不同尺度的子信号。
2. Welch法
Welch法是一种功率谱估计方法,能够有效地估计信号的频谱特性。本文采用Welch法对不同尺度的子信号进行功率谱估计,得到不同频率范围内的能量分布。
3. 故障诊断
通过分析不同尺度子信号的功率谱,可以判断齿轮箱是否存在故障。例如,如果在某个特定频率范围内出现明显的能量峰值,则表明齿轮箱可能存在相应的故障。
4. 结论
本文基于小波分解和Welch法,对齿轮箱振动信号进行分析和故障诊断,取得了良好的效果。该方法能够有效地提取信号的局部特征和频谱特性,为齿轮箱故障诊断提供可靠的依据。
⛳️ 运行结果
🔗 参考文献
[1]刘国飞.基于多信号融合的电主轴故障预警方法及系统研究[D].吉林大学[2024-05-06].DOI:CNKI:CDMD:2.1017.152018.
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类