作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
随着全球对环境保护和可持续发展的关注度不断提高,综合能源系统因其能够实现多种能源的协同互补、高效利用,成为能源领域研究的热点。电解槽作为综合能源系统中实现电 - 氢转换的关键设备,其变载启停特性对系统的运行灵活性和经济性有着重要影响。同时,阶梯式碳交易机制作为一种有效的环境经济政策,通过对碳排放进行定价,激励企业减少碳排放,促使综合能源系统在运行过程中更加注重低碳化和绿色化。开展考虑电解槽变载启停特性与阶梯式碳交易机制的综合能源系统优化调度研究,有助于提高系统的运行效率、降低运行成本、减少碳排放,对推动能源转型和实现 “双碳” 目标具有重要的理论和现实意义。
二、电解槽变载启停特性与阶梯式碳交易机制分析
(一)电解槽变载启停特性
电解槽在运行过程中,其功率输出可以在一定范围内灵活调整,以适应系统的负荷变化和能源供应情况。然而,频繁的变载和启停会对电解槽的设备寿命和运行效率产生不利影响,增加设备的维护成本和能耗。此外,电解槽在启动和停止过程中,存在一定的过渡时间和能量损耗,这些特性都需要在综合能源系统优化调度中予以充分考虑。
(二)阶梯式碳交易机制
阶梯式碳交易机制是指根据企业的碳排放量划分不同的阶梯,对处于不同阶梯的碳排放设定不同的价格。当企业的碳排放量低于基准值时,可通过出售剩余的碳排放配额获得收益;当碳排放量超过基准值时,则需要购买额外的碳排放配额以满足排放要求。这种机制能够引导企业主动采取节能减排措施,优化能源消费结构,在综合能源系统的运行调度中,会直接影响系统的运行成本和决策策略。
三、综合能源系统优化调度模型构建
四、优化调度模型求解方法
(一)智能优化算法
采用粒子群优化算法(PSO)、遗传算法(GA)等智能优化算法对构建的综合能源系统优化调度模型进行求解。这些算法具有全局搜索能力强、对复杂非线性问题适应性好等优点。以粒子群优化算法为例,通过初始化粒子群的位置和速度,根据目标函数计算每个粒子的适应度值,不断更新粒子的位置和速度,在搜索空间中寻找最优解。
(二)混合算法
为提高求解效率和精度,可考虑将智能优化算法与传统优化算法相结合,形成混合算法。例如,将粒子群优化算法与线性规划算法相结合,先用粒子群优化算法进行全局搜索,找到较优的解空间范围,再利用线性规划算法在该范围内进行局部精细搜索,以得到更优的解。
五、案例分析
(一)案例系统构建
构建一个包含风力发电机、光伏电站、燃气轮机、电锅炉、电解槽、氢燃料电池以及储能设备的综合能源系统案例。设定各设备的参数、负荷曲线、能源价格以及阶梯式碳交易机制的具体参数。
(二)仿真结果分析
- 经济性分析:对比考虑电解槽变载启停特性与阶梯式碳交易机制前后综合能源系统的运行成本,分析不同因素对成本的影响程度。
- 低碳性分析:比较系统在不同调度策略下的碳排放量,评估阶梯式碳交易机制对系统碳排放的约束效果。
- 设备运行分析:分析电解槽在优化调度过程中的变载启停情况,以及其他设备的运行状态,验证优化调度模型对设备运行的合理调控作用。
六、研究结论与展望
(一)研究结论
- 考虑电解槽变载启停特性与阶梯式碳交易机制能够有效降低综合能源系统的运行成本,提高系统的经济性。
- 阶梯式碳交易机制对综合能源系统的碳排放具有显著的约束和引导作用,有助于推动系统实现低碳化运行。
- 所构建的优化调度模型和求解方法能够合理调度综合能源系统内各设备的运行,实现能源的高效利用和系统的优化运行。
(二)研究展望
- 进一步考虑更多不确定性因素,如可再生能源发电的波动性、负荷预测的误差等,完善综合能源系统优化调度模型。
- 研究如何将阶梯式碳交易机制与其他环境经济政策相结合,形成更有效的激励约束机制,促进综合能源系统的可持续发展。
- 探索更加高效的优化算法和求解技术,提高综合能源系统优化调度模型的求解效率和精度,以满足实际工程应用的需求。
⛳️ 运行结果
🔗 参考文献
[1] 陈婉茹,徐光明,张得志,等.碳交易机制下多中心混合车队配送路径和速度优化研究[J].系统工程理论与实践, 2023, 43(11):3320-3335.DOI:10.12011/SETP2022-2971.
[2] 刘清宇.电网企业节能减排贡献效果综合评价研究[D].华北电力大学,2012.DOI:10.7666/d.y2140329.
[3] 刘培德,李西娜,李佳路.碳配额交易机制下竞争企业低碳技术扩散——基于复杂网络的演化博弈分析[J].系统工程理论与实践, 2024, 44(2):684-699.DOI:10.12011/SETP2022-3202.
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇