作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
随着能源结构的调整与电力技术的发展,柔性电力系统在现代电网中的应用愈发广泛。油浸式变压器作为柔性电力系统中的关键设备,其老化状况直接关乎系统的可靠运行。本文深入剖析柔性电力系统运行环境对油浸式变压器老化的影响机制,综合考虑热、电、化学等多方面因素,构建油浸式变压器老化模型,通过大量数据仿真与实际案例分析,探究在柔性电力系统工况下油浸式变压器的最佳老化极限,为电力系统的安全稳定运行与设备维护提供科学依据。
关键词
柔性电力系统;油浸式变压器;老化极限;绝缘老化;影响因素
一、引言
柔性电力系统凭借其灵活的潮流控制、高效的电能质量调节以及对分布式能源的良好兼容性,成为推动能源转型与提升电网智能化水平的关键技术支撑 。在柔性电力系统中,各类电力电子装置的广泛应用改变了系统的运行特性,使得系统电压、电流的波形与幅值变化更为复杂 。油浸式变压器作为电力传输与分配的核心设备,长期运行在这种复杂多变的电气环境下,其老化进程受到显著影响。
变压器的老化会导致绝缘性能下降,增加故障发生的概率,一旦发生故障,不仅会造成停电事故,影响社会生产生活,还可能引发严重的设备损坏和经济损失 。因此,准确掌握柔性电力系统中油浸式变压器的老化规律,确定其最佳老化极限,对于制定合理的设备维护策略、延长变压器使用寿命、保障电力系统的安全稳定运行具有重要的现实意义。目前,针对传统电力系统中变压器老化的研究较多,但在柔性电力系统这一新兴背景下,油浸式变压器老化特性及最佳老化极限的研究尚显不足,亟待深入探究。
二、柔性电力系统与油浸式变压器概述
2.1 柔性电力系统特点及对变压器运行的影响
柔性电力系统通过应用柔性交流输电系统(FACTS)和高压直流输电(HVDC)等技术,能够实现对电力系统潮流、电压、频率等参数的灵活控制 。在柔性电力系统中,电力电子装置的快速开关动作会产生大量的谐波,这些谐波注入电网后,会导致变压器绕组电流和磁通发生畸变 。谐波电流会使变压器绕组产生额外的铜损,引起局部过热,加速绝缘材料的老化;同时,谐波磁通会在铁芯中产生高频涡流损耗,进一步加剧铁芯发热,影响变压器的正常运行。此外,柔性电力系统中的电压波动和闪变现象也较为频繁,这会使变压器承受的电气应力发生剧烈变化,对绝缘系统造成冲击,加速绝缘老化进程。
2.2 油浸式变压器结构与工作原理
油浸式变压器主要由铁芯、绕组、油箱、绝缘油以及其他附件组成 。铁芯作为磁路的载体,采用高导磁率的硅钢片叠装而成,以降低磁滞损耗和涡流损耗 。绕组是变压器实现电能转换的关键部件,通常由铜或铝导线绕制而成,分为高压绕组和低压绕组,通过电磁感应原理实现电压的变换 。油箱用于容纳铁芯和绕组,并充入绝缘油,绝缘油不仅起到绝缘作用,还能通过对流散热带走变压器运行过程中产生的热量 。在变压器运行时,交流电流通过绕组产生交变磁场,交变磁场在铁芯中感应出电动势,从而实现电能从一次侧到二次侧的传递 。
2.3 油浸式变压器老化对柔性电力系统的潜在风险
随着油浸式变压器的老化,其绝缘性能逐渐下降,可能引发内部放电现象 。局部放电会产生大量的活性粒子,这些粒子会进一步侵蚀绝缘材料,导致绝缘性能加速劣化 。当绝缘老化到一定程度时,可能会发生绝缘击穿故障,使变压器绕组短路,引发跳闸事故,严重影响柔性电力系统的供电可靠性 。此外,老化的变压器其损耗会增加,运行效率降低,不仅会造成能源浪费,还可能导致系统电压波动加剧,影响其他电力设备的正常运行 。在柔性电力系统中,由于各设备之间的关联性较强,一台变压器的故障可能会引发连锁反应,对整个系统的稳定性和安全性构成严重威胁 。
三、影响油浸式变压器老化的因素分析
3.1 热因素
在柔性电力系统中,谐波电流和负荷波动等因素会导致油浸式变压器产生额外的热量,使绕组和铁芯温度升高 。当绕组热点温度超过规定值时,绝缘材料的老化速度会显著加快 。根据 Arrhenius 定律,绝缘材料的老化速率与温度呈指数关系,一般情况下,绕组热点温度在 80℃ - 140℃范围内,温度每升高 6℃,变压器的相对老化率增加 1 倍,寿命缩短一半 。长期处于高温环境下,绝缘纸会逐渐变脆、失去韧性,绝缘油的性能也会下降,导致其绝缘和散热能力降低,进一步加速变压器的老化进程 。
3.2 电因素
柔性电力系统中存在的谐波、过电压等电应力对油浸式变压器的绝缘系统构成严重威胁 。谐波会使变压器绕组电压分布不均匀,导致局部电场强度过高,加速绝缘老化 。过电压包括操作过电压和雷电过电压,当变压器遭受过电压冲击时,绝缘系统承受的电压会瞬间升高,可能引发绝缘击穿 。此外,长期的电应力作用还会导致绝缘材料内部产生气隙,气隙中的电场强度较高,容易发生局部放电,局部放电产生的热、化学腐蚀等作用会逐渐侵蚀绝缘材料,使绝缘性能不断下降 。
3.3 化学因素
油浸式变压器中的绝缘油在运行过程中会与氧气、水分等物质发生化学反应,导致油质老化 。绝缘油老化后,其酸值增加,会对绕组和铁芯产生腐蚀作用 。同时,老化产生的油泥等杂质会沉积在变压器内部,影响散热效果,进一步加剧变压器的热老化 。此外,当变压器内部发生局部放电或过热故障时,绝缘油会分解产生氢气、乙炔等气体,这些气体的含量可以作为判断变压器内部故障和老化程度的重要指标 。如果不及时处理,随着气体含量的增加,变压器的运行风险也会不断增大 。
3.4 机械因素
在柔性电力系统中,负荷的频繁变化会使变压器绕组受到周期性的电磁力作用,导致绕组发生振动和位移 。长期的振动会使绕组的绝缘材料磨损,降低绝缘性能 。此外,当变压器遭受短路电流冲击时,绕组会受到巨大的电磁力,可能导致绕组变形、扭曲,甚至损坏绝缘 。机械损伤一旦发生,会加速变压器的老化进程,增加故障发生的可能性 。
四、油浸式变压器老化模型构建
4.2 模型参数确定方法
为确定老化模型中的参数,需要进行大量的实验研究和现场数据监测 。通过对不同运行工况下的油浸式变压器进行长期跟踪监测,获取绕组温度、电场强度、绝缘油成分、电磁力等数据 。同时,定期对变压器绝缘纸进行采样分析,测量其聚合度 。利用多元线性回归等数学方法,对监测数据和实验结果进行拟合,从而确定各因素的影响系数 。例如,通过控制其他因素不变,仅改变绕组热点温度,测量不同温度下绝缘纸聚合度随时间的变化,得到热因素影响系数
k1
的数值 。同理,可确定电、化学、机械因素的影响系数 。
4.3 模型验证与准确性分析
将构建的老化模型应用于实际的油浸式变压器运行数据进行验证 。选取多台在柔性电力系统中运行的不同型号、不同运行年限的油浸式变压器,将其实际运行参数代入老化模型,计算得到绝缘纸聚合度的预测值,并与实际测量值进行对比 。通过计算预测值与实际值之间的误差,评估模型的准确性 。若误差在可接受范围内,则说明模型能够较好地反映油浸式变压器在柔性电力系统中的老化规律;若误差较大,则需要对模型进行修正和优化,例如调整影响系数、增加其他影响因素等,以提高模型的准确性 。
五、确定最佳老化极限的方法与指标
5.1 基于绝缘性能的老化极限确定
绝缘性能是衡量油浸式变压器老化程度和运行可靠性的关键指标 。当绝缘纸聚合度降低到一定程度时,其机械强度和电气绝缘性能会急剧下降 。一般认为,当绝缘纸聚合度低于 250 时,变压器绝缘已丧失机械强度,存在较大的运行风险 。因此,可以将绝缘纸聚合度 250 作为基于绝缘性能的油浸式变压器老化极限判断指标 。同时,还可以通过测量绝缘油的击穿电压、介质损耗因数等参数来辅助判断变压器的绝缘老化程度 。当绝缘油击穿电压低于规定值、介质损耗因数超过允许范围时,也表明变压器绝缘性能下降,接近老化极限 。
六、案例分析与仿真验证
6.1 实际柔性电力系统中变压器运行数据采集
选取某实际柔性电力系统中的多台油浸式变压器作为研究对象,通过安装在变压器上的在线监测装置,采集其运行过程中的实时数据,包括绕组温度、油温、负荷电流、电压、绝缘油成分等 。同时,定期对变压器进行停电检修,采集绝缘纸样品,测量其聚合度 。经过一段时间的监测和数据积累,获取了丰富的变压器运行数据和老化相关数据 。
6.2 基于老化模型的老化进程模拟
将采集到的实际运行数据代入构建的老化模型中,对油浸式变压器的老化进程进行模拟 。通过模拟,可以预测不同运行时间下变压器绝缘纸的聚合度变化情况,以及绝缘油中老化产物的生成和积累情况 。将模拟结果与实际测量数据进行对比,验证老化模型的准确性和有效性 。例如,通过模拟预测某台变压器运行 5 年后绝缘纸聚合度将降低到 300,而实际测量值为 295,两者较为接近,说明老化模型能够较好地模拟变压器的老化进程 。
6.3 确定最佳老化极限并评估效果
根据综合可靠性与经济性的最佳老化极限确定方法,对采集数据的变压器进行分析计算 。通过层次分析法确定可靠性指标权重为 0.6,经济性指标权重为 0.4 。计算各变压器的综合评估函数值,确定最佳老化极限 。例如,某台变压器经过计算,其最佳老化极限为运行 8 年 。在该变压器运行到 8 年后,对其进行评估,发现此时变压器的绝缘性能虽有所下降,但仍在可接受范围内,同时运行成本与更换新变压器的成本相比达到了一个较为合理的平衡点,验证了确定的最佳老化极限的合理性和有效性 。
七、结论与展望
7.1 研究结论总结
本文针对柔性电力系统中油浸式变压器的最佳老化极限问题进行了深入研究 。通过分析柔性电力系统特点对变压器运行的影响,明确了热、电、化学、机械等因素是导致油浸式变压器老化的主要原因 。构建了基于多因素耦合的老化模型,并通过实验数据和实际运行数据验证了模型的准确性 。提出了基于绝缘性能、经济成本以及综合可靠性与经济性的最佳老化极限确定方法,并通过案例分析和仿真验证,确定了实际柔性电力系统中油浸式变压器的最佳老化极限,为变压器的运行维护和设备更新提供了科学依据 。
7.2 研究不足与未来展望
在本研究中,虽然考虑了多种因素对油浸式变压器老化的影响,但实际运行中的情况可能更为复杂,例如变压器内部的局部放电模式、不同环境因素的协同作用等尚未完全考虑周全 。未来的研究可以进一步深入探究这些复杂因素对变压器老化的影响机制,完善老化模型 。此外,随着人工智能技术的发展,可以将机器学习、深度学习等方法应用于变压器老化监测与预测,提高老化评估的准确性和实时性 。同时,还需要加强对变压器老化检测新技术、新方法的研究,为柔性电力系统中油浸式变压器的可靠运行提供更有力的技术支持 。
⛳️ 运行结果
🔗 参考文献
[1] 黄贻煜,毛承雄,陆继明,等.电力电子变压器在输电系统中的控制策略研究[J].继电器, 2004, 32(6):35-39.DOI:10.3969/j.issn.1674-3415.2004.06.010.
[2] 韩鹏.大型自然油循环导向冷却结构变压器温度场计算研究[D].河北工业大学,2005.DOI:10.7666/d.y843762.
[3] 李琰琰.油浸式电力变压器故障诊断的研究[D].南京理工大学[2025-07-01].
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇