【没发表过的创新点】基于TCN-GRU-Attention的风电功率预测研究附Matlab代码

作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

本研究聚焦于风电功率预测难题,针对现有模型在特征提取深度和动态适应性不足等问题,提出基于时序卷积网络(TCN)、门控循环单元(GRU)和注意力机制(Attention)的风电功率预测模型。通过 TCN 与 GRU 协同提取时间序列特征,结合自适应时空注意力机制精准捕捉关键信息,同时引入动态权重调整策略优化模型。实验表明,该模型在多场景下预测精度显著提升,为风电功率预测提供新的技术方案与创新思路。

一、引言

1.1 研究背景

在全球能源转型的大趋势下,风力发电凭借清洁、可再生的优势,成为能源领域的重要发展方向。然而,风能的随机性和波动性使得风电功率难以精准预测,给电力系统的稳定运行、经济调度和电力市场交易带来巨大挑战。准确的风电功率预测有助于提高风电消纳能力、降低系统运行成本,对推动风电产业健康发展具有重要意义。

1.2 研究现状

当前风电功率预测方法涵盖物理模型、统计模型和人工智能模型。物理模型依赖复杂气象参数和流体力学计算,适应性差;统计模型在处理非线性数据时表现欠佳;人工智能模型中,深度学习方法如 LSTM、GRU 虽有应用,但存在特征提取不充分、模型泛化能力弱等问题。部分研究将 TCN、GRU 与 Attention 结合,但在特征提取机制、注意力分配方式及模型优化策略上仍有提升空间,亟需更具创新性和高效性的预测模型。

1.3 研究意义

本研究提出的基于 TCN-GRU-Attention 的风电功率预测模型,旨在突破现有方法的局限,提升预测精度和模型适应性,为电力系统的优化调度、风电资源的合理配置提供可靠的数据支持,促进风电产业与电力系统的协同发展。

二、相关理论与方法

2.1 时序卷积网络(TCN)

TCN 通过因果卷积和膨胀卷积处理时间序列数据,因果卷积确保输出仅依赖过去和当前输入,避免未来信息泄露;膨胀卷积以指数级扩大感受野,可有效捕捉时间序列的长距离依赖关系,在风电功率多变量时间序列特征提取中具有独特优势。

2.2 门控循环单元(GRU)

GRU 作为 LSTM 的简化变体,通过更新门和重置门控制信息流动,能有效处理时间序列数据的长期依赖问题,相比 LSTM 结构更简单、训练效率更高,适用于风电功率时间序列的动态特征学习。

2.3 注意力机制(Attention)

注意力机制模拟人类注意力分配,可使模型聚焦输入数据关键信息。在风电功率预测中,不同因素(风速、风向、温度等)及各时刻数据对功率的影响程度不同,通过注意力机制自适应分配权重,能增强模型对关键特征的捕捉能力。

三、基于 TCN-GRU-Attention 的风电功率预测模型构建

3.1 数据预处理

收集风速、风向、温度、气压、湿度等多变量历史数据及风电功率数据,采用多重填补法处理缺失值,通过孤立森林算法检测并修正异常值,利用标准化方法将数据归一化到 [0, 1] 区间,按 7:1:2 比例划分训练集、验证集和测试集,确保数据质量和模型训练效果。

3.2 模型结构设计

模型由数据输入层、TCN 特征提取层、GRU 时间序列分析层、自适应时空注意力机制层和输出层组成。数据输入层接收预处理后的多变量时间序列数据;TCN 特征提取层通过多层因果卷积和膨胀卷积操作,提取数据长距离依赖特征;GRU 时间序列分析层对 TCN 提取的特征进一步处理,学习数据动态变化规律;自适应时空注意力机制层根据 GRU 输出,从时间和空间维度动态分配各因素及时间步权重,突出关键信息;输出层通过全连接层将处理后的特征映射为风电功率预测值。

3.3 模型训练与优化

采用均方误差(MSE)作为损失函数,结合 RAdam 优化器进行训练,动态调整学习率。引入动态权重调整策略,根据训练过程中不同层对预测误差的贡献,自适应调整 TCN、GRU 和 Attention 机制相关参数的更新权重,加速模型收敛,提高训练效率和预测精度。同时,使用 Dropout 和标签平滑正则化技术防止过拟合,提升模型泛化能力。

四、 结果分析

本模型性能优异的原因在于:TCN 与 GRU 协同提取时间序列特征,充分挖掘数据长距离依赖和动态变化规律;自适应时空注意力机制精准聚焦关键信息,增强模型对复杂数据的处理能力;动态权重调整策略优化模型训练过程,加快收敛速度并提高预测精度,使模型在多场景下均能实现更准确的风电功率预测。

五、创新点

5.1 模型融合机制创新

提出 TCN 与 GRU 的深度协同特征提取机制,区别于传统简单串联方式。通过设计特殊的层间连接结构,使 TCN 提取的长距离依赖特征能更高效地输入 GRU,GRU 学习到的动态特征也可反馈优化 TCN 卷积过程,实现特征提取的双向促进,相比现有模型能更全面、深入地挖掘风电数据特征。

5.2 注意力机制创新

引入自适应时空注意力机制,在时间维度上,根据风电功率变化趋势动态调整各时间步权重;在空间维度上,依据多变量间关联程度分配不同因素权重。相较于传统注意力机制仅从单一维度或固定方式分配权重,该机制能更精准地捕捉风电数据中时空耦合的关键信息,显著提升模型对复杂多变风电数据的处理能力。

5.3 模型优化策略创新

提出动态权重调整策略,在模型训练过程中,实时分析 TCN、GRU 和 Attention 机制各层对预测误差的贡献度,动态调整对应参数更新权重。当某层对误差影响较大时,加大其参数更新力度;反之则减小,避免参数更新的盲目性,提高训练效率和模型预测精度,为模型优化提供新的思路和方法 。

六、结论与展望

6.1 研究结论

本研究提出的基于 TCN-GRU-Attention 的风电功率预测模型,通过创新的模型融合机制、注意力机制和优化策略,在多场景风电功率预测中表现出优异性能,有效提高了预测精度和模型适应性,为风电功率预测提供了一种创新且实用的解决方案。

6.2 研究展望

未来研究可从以下方向拓展:一是探索将更多先进技术如强化学习、图神经网络融入模型,进一步提升预测性能;二是结合物联网技术,实时获取更多维度数据(如风机叶片状态、机舱振动数据等),丰富模型输入信息;三是开展模型在微电网、虚拟电厂等新型电力系统场景中的应用研究,验证和优化模型的适用性,推动风电功率预测技术的发展与应用。

⛳️ 运行结果

图片

图片

图片

🔗 参考文献

[1] 项新建,许宏辉,谢建立,等.基于VMD-TCN-GRU模型的水质预测研究[J].人民黄河, 2024(003):046.

[2] 吴家葆,曾国辉,张振华,等.基于K-means分层聚类的TCN-GRU和LSTM动态组合光伏短期功率预测[J].可再生能源, 2023, 41(8):1015-1022.DOI:10.3969/j.issn.1671-5292.2023.08.004.

[3] 宋磊,黄佳睿,吴奇龙,等.基于SSA-TCN-BiGRU的半潜型浮式风机运动姿态预测方法[J].船舶工程, 2024, 46(12):163-172.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值