✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
多变量回归预测是从多个输入变量中预测连续输出值的关键技术,在金融风控、工业参数预测、环境监测等领域应用广泛。Transformer-LSTM、Transformer、CNN-LSTM、LSTM、CNN 五种模型因在时序建模与特征提取上的差异化优势,成为回归任务的主流选择。本文构建 “一键对比” 框架,系统评估五模型在多变量回归场景中的性能,为模型选型提供全面参考。
一、五模型核心原理与结构差异
1.1 基础时序模型:LSTM
长短期记忆网络(LSTM)通过门控机制(输入门、遗忘门、输出门)解决传统 RNN 的梯度消失问题,专注捕捉时序依赖:
- 核心能力:通过细胞状态保留长期信息(如连续 12 个月的销售额趋势),遗忘门过滤噪声(如偶然的销售波动);
- 多变量适配:将多变量数据按时间步拼接为输入序列(如 “温度 + 湿度 + 光照” 的 hourly 数据),通过隐藏层输出回归预测值;
- 局限:对变量间的空间关联(如 “地区 A 销量与地区 B 销量的联动”)捕捉不足,长时序(>100 步)预测精度下降。
1.2 局部特征模型:CNN
卷积神经网络(CNN)通过卷积操作提取多变量的局部空间特征,适用于含局部模式的回归任务:
- 核心机制:用 2D 卷积核(如 2×3)滑动遍历多变量矩阵(变量 × 时间步),捕捉 “变量组合 + 局部时间窗” 的关联特征(如 “前 3 小时温度 × 湿度” 对能耗的影响);
- 优势:在高维输入(>20 个变量)场景中,通过池化层降维,计算效率优于 LSTM;
- 局限:缺乏时序建模能力,无法捕捉跨时间窗的长期依赖(如季节性趋势)。
1.3 混合时序 - 特征模型:CNN-LSTM
融合 CNN 的局部特征提取与 LSTM 的时序建模能力:
- 双层处理:CNN 层先提取多变量的局部空间特征(如 “气压 × 风速” 的协同模式),输出特征序列;LSTM 层再学习该序列的长短期依赖(如连续 7 天的风电出力趋势);
- 适用场景:变量间存在强局部关联且时序依赖显著的数据(如 “气象因素 + 历史负荷” 预测电力消耗);
- 性能定位:精度优于单一 LSTM 或 CNN,但对全局关键特征(如政策变动对销量的影响)关注度不足。
1.4 全局关联模型:Transformer
基于自注意力机制的 Transformer,突破 LSTM 的序列依赖限制,擅长捕捉全局关联:
- 自注意力机制:计算每个时间步与所有步的关联权重(如 “第 30 天销量” 与 “第 1 天促销活动” 的隐性关联),通过多头注意力并行学习不同类型的关联模式;
- 位置编码:通过正弦函数注入时间位置信息,确保模型感知时序顺序;
- 优势:在长时序(>300 步)回归任务中,预测精度比 LSTM 高 15%-20%,尤其适合变量间存在复杂全局关联的场景(如多地区经济指标预测 GDP)。
1.5 全栈融合模型:Transformer-LSTM
结合 Transformer 的全局关联捕捉与 LSTM 的局部时序建模:
- 并行处理:Transformer 层处理全局长时序关联(如年度销售趋势),LSTM 层专注局部短期波动(如每周销量变化);
- 特征融合:通过全连接层加权融合两模型的输出,动态平衡全局趋势与局部细节;
- 核心创新:解决 Transformer 在短期剧烈波动场景(如股票分钟级价格预测)中响应滞后的问题,比单一 Transformer 精度提升 8%-12%。
⛳️ 运行结果
📣 部分代码
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇