✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
移动机器人在复杂环境中的自主导航依赖于高效的路径规划算法,栅格地图因建模简单、易于实现而成为主流环境表示方法。人工旅鼠算法(Artificial Lemming Algorithm, ALA)借鉴自然界旅鼠的群体迁徙与协作行为,通过个体局部决策与群体信息共享,在栅格地图中展现出强鲁棒性与全局搜索能力。本文系统阐述 ALA 在移动机器人路径规划中的应用,从算法原理、栅格环境适配到实验验证,构建完整的路径规划方案,为复杂障碍物场景提供高效解决方案。
一、栅格地图路径规划的核心挑战
栅格地图将环境离散为 M×N 的网格单元(如 1m×1m),每个单元标记为 “自由空间(0)” 或 “障碍物(1)”,路径规划需解决三重核心问题:
1.1 无碰撞路径搜索
移动机器人(如直径 0.5m 的轮式机器人)需在栅格中找到从起点(S)到终点(T)的连续路径,确保路径上所有栅格均为自由空间,且与障碍物保持安全距离(≥0.3m)。在密集障碍物场景(如迷宫式布局)中,传统算法(如 A*)易陷入 “死胡同” 局部最优,需频繁回溯调整路径。
1.2 多目标优化平衡
实用路径需同时优化三项指标:
- 路径长度:最短路径可提升移动效率(如从起点到终点的栅格数最少);
- 平滑性:减少转向次数(如相邻栅格方向变化≤90°),降低机器人能耗;
- 安全性:与障碍物的最小距离最大化(如≥2 个栅格),避免碰撞风险。
这些目标存在冲突(如最短路径可能贴近障碍物),需算法找到均衡解。
1.3 动态环境适应性
尽管本文聚焦静态栅格地图,但算法需具备扩展至动态场景的潜力:当障碍物位置变化(如临时出现的箱子)时,能快速重规划路径,搜索时间需控制在 1 秒内以满足实时性要求。
二、人工旅鼠算法(ALA)的核心原理
ALA 模拟旅鼠的群体行为(迁徙、觅食、避障、信息传递),通过个体局部决策与群体协作实现全局优化,核心机制包括:
2.1 个体行为规则
每个 “人工旅鼠” 代表一条候选路径的局部节点,其行为由四项规则驱动:
- 迁徙行为:沿当前方向移动至相邻栅格(如向上、下、左、右及 4 个对角线方向,共 8 个可能方向),移动概率与目标点的距离负相关(距终点越近,移动概率越高);
- 避障行为:若前方栅格为障碍物,立即触发转向机制 —— 随机选择 3 个非障碍方向,优先选择与原方向夹角最小的方向(如原方向向右,优先选择右上或右下);
- 跟随行为:感知周围 5 个栅格内的其他旅鼠,向路径更优(长度更短、更安全)的个体移动,避免重复搜索;
- 觅食行为:对长时间未改进的路径(如连续 10 步无变化),随机跳跃至附近未探索栅格,跳出局部最优。
2.2 群体协作机制
旅鼠群体通过信息素(Pheromone)共享路径信息,形成全局引导:
- 信息素更新:每条路径的信息素浓度与路径适应度正相关(适应度越高,浓度越高),同时随迭代衰减(避免陷入过时路径);
- 路径选择:旅鼠移动时,优先选择信息素浓度高的栅格,实现 “优路径强化、差路径弱化”;
- 群体更新:每迭代淘汰 20% 适应度最低的个体,随机生成新旅鼠补充,维持群体多样性(群体规模通常为 50-100)。
⛳️ 运行结果
📣 部分代码
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇