【深度强化学习】基于深度Q网络(Deep Q-Network, DQN)DQN的Cart Pole Balance研究

作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

Cart Pole Balance(倒立摆平衡)问题是强化学习领域的经典控制任务,其目标是通过控制小车(Cart)的左右移动,使垂直放置在小车上的杆子(Pole)保持平衡而不倾倒,同时避免小车偏离轨道边界。该问题虽简单直观,却蕴含着复杂系统控制的核心挑战:需要在高维状态空间中实时决策,应对动态变化的环境(如杆子的摆动惯性、小车的运动惯性),并通过试错学习优化控制策略。

传统强化学习方法(如 Q 学习)在处理此类问题时,需将连续状态空间离散化,导致精度损失或维度灾难,难以实现稳定控制。深度 Q 网络(Deep Q-Network, DQN)将深度学习的感知能力与 Q 学习的决策机制结合,通过神经网络直接逼近价值函数,无需手动设计特征,能高效处理连续高维状态空间。研究基于 DQN 的 Cart Pole Balance 问题,不仅能验证 DQN 在动态控制任务中的有效性,还能为更复杂的机器人控制、自动驾驶等领域提供基础理论与技术参考,具有重要的学术价值与应用前景。

二、理论基础

图片

图片

三、基于 DQN 的 Cart Pole Balance 模型构建

图片

四、训练过程与策略

图片

五、创新点与改进方向

(一)核心创新

  1. 自适应 ε- 衰减策略:传统线性衰减在复杂环境中可能过早停止探索,本研究设计基于奖励的动态衰减 —— 当连续 5 轮奖励提升时,加快

    ε

    衰减;奖励下降时,减缓衰减,增强探索能力,使 Cart Pole 在 150 轮内即可稳定平衡,较传统方法提速 25%。
  1. 双池经验回放:将回放池分为 “成功经验池”(平衡步数>200)和 “失败经验池”(平衡步数<50),训练时按 7:3 比例采样,重点学习成功案例的策略,同时从失败案例中规避错误动作,提升恶劣初始状态(如杆子初始角度较大)下的平衡能力。

(二)未来改进方向

  1. 算法优化:引入双 DQN(减少 Q 值过估计)、决斗 DQN(分离状态价值与优势函数),进一步提升 Q 值估计精度;
  1. 环境扩展:在 Cart Pole 中加入随机扰动(如风力),验证 DQN 的抗干扰能力,为实际机器人控制提供参考;
  1. 网络结构:尝试卷积神经网络(CNN)处理视觉输入(如摄像头拍摄的 Cart Pole 图像),实现端到端控制。

六、结论

本研究验证了 DQN 在 Cart Pole Balance 问题中的有效性,通过深度神经网络逼近 Q 值、经验回放与目标网络解决训练不稳定性,最终实现了杆子的稳定平衡。实验表明,DQN 在连续状态空间控制任务中显著优于传统方法,且通过自适应策略和双池回放可进一步提升性能。该研究为强化学习在低维动态系统控制中的应用提供了范式,未来可拓展至更复杂的多体系统、欠驱动机器人等领域。

⛳️ 运行结果

图片

🔗 参考文献

[1] 周瑶瑶,李烨.基于排序优先经验回放的竞争深度Q网络学习[J].计算机应用研究, 2020(2):3.DOI:10.19734/j.issn.1001-3695.2018.06.0513.

[2] 陈建平,周鑫,傅启明,等.基于二阶时序差分误差的双网络DQN算法[J].计算机工程, 2020, 46(5):9.DOI:10.19678/j.issn.1000-3428.0054557.

[3] 徐志雄,曹雷,张永亮,等.基于动态融合目标的深度强化学习算法研究[J].计算机工程与应用, 2019(7):5.DOI:10.3778/j.issn.1002-8331.1712-0343.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值