【图像融合】使用显著性检测对可见光和红外图像进行双尺度图像融合附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

可见光图像与红外图像的融合旨在整合两类图像的互补信息:可见光图像富含纹理细节与色彩信息,适合描述场景的外观特征;红外图像能捕捉物体的热辐射差异,在夜间或复杂环境中可清晰凸显目标(如高温物体、活体)。传统融合方法(如多尺度变换融合)常存在 “显著性目标被背景淹没”(如红外目标在可见光纹理丰富区域不突出)或 “细节丢失”(如融合后可见光的纹理模糊)等问题。本文提出一种基于显著性检测的双尺度图像融合方法,通过显著性检测精准定位关键目标,结合双尺度分解(多尺度与细节尺度)实现 “目标突出 + 细节保留” 的高质量融合,尤其适用于夜间监控、目标追踪等场景。

图像融合的核心矛盾与技术突破口

可见光与红外图像的模态差异导致融合需平衡两大核心需求:

1.1 显著性目标的精准提取

  • 红外图像的显著性目标(如夜间行人、发热设备)在可见光图像中可能对比度低,易被复杂背景(如灯光、树叶)掩盖;
  • 传统融合规则(如 “取最大值”)可能过度保留背景纹理,导致目标辨识度下降。

1.2 多尺度信息的分层保留

图像信息具有多尺度特性:

  • 大尺度信息:场景的整体结构(如建筑轮廓、地平线),需保持空间一致性;
  • 小尺度信息:局部细节(如物体边缘、纹理),需避免模糊或伪影。

单一尺度分解难以兼顾,需通过双尺度架构分别处理,再融合重构。

1.3 显著性检测与尺度分解的协同

显著性检测的核心是生成显著性图(Saliency Map),量化每个像素的 “重要性”(值越高表示越可能是目标)。将其与双尺度分解结合,可实现:

  • 大尺度下:基于显著性图加权融合,确保目标区域优先保留红外信息;
  • 小尺度下:基于细节活跃度加权融合,确保背景区域保留可见光纹理。

⛳️ 运行结果

📣 部分代码

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

由于该问题需要较为复杂的图像处理技术,因此建议使用专业的图像处理软件工具包,如MATLAB中的图像处理工具箱计算机视觉工具箱。 以下是一种基于多尺度显著性检测正交空间的可见光红外图像融合方法的MATLAB代码: % 读取可见光红外图像 visImg = imread('visible.jpg'); irImg = imread('infrared.jpg'); % 将图像转换为灰度图像 visGray = rgb2gray(visImg); irGray = rgb2gray(irImg); % 根据多尺度显著性检测方法计算可见光红外图像显著性图 visSal = saliency(visGray); irSal = saliency(irGray); % 根据正交空间融合方法将可见光红外图像融合 fusionImg = fusion(visGray, irGray, visSal, irSal); % 显示融合后的图像 imshow(fusionImg); % 多尺度显著性检测方法 function salImg = saliency(img) % 定义高斯金字塔尺度数 numScales = 5; % 定义高斯金字塔每个尺度的权重 weights = [0.05, 0.1, 0.15, 0.2, 0.5]; % 定义高斯金字塔 pyramid = cell(numScales, 1); % 构建高斯金字塔 for i = 1:numScales if i == 1 pyramid{i} = img; else pyramid{i} = imresize(pyramid{i-1}, 0.5); end end % 计算每个尺度显著性图 salMaps = cell(numScales, 1); for i = 1:numScales % 计算每个尺度的中值滤波结果 medianImg = medfilt2(pyramid{i}, [3, 3]); % 计算每个尺度的边缘强度图 edgeImg = edge(medianImg, 'canny'); % 计算每个尺度显著性图 salMaps{i} = abs(imfilter(edgeImg, [1 -1], 'symmetric')) + abs(imfilter(edgeImg, [1; -1], 'symmetric')); salMaps{i} = salMaps{i} .* weights(i); end % 将每个尺度显著性图加权求得到最终显著性图 salImg = sum(cat(3, salMaps{:}), 3); salImg = mat2gray(salImg); end % 正交空间融合方法 function fusionImg = fusion(visImg, irImg, visSal, irSal) % 定义正交空间滤波器的参数 alpha = 0.45; beta = 0.05; gamma = 1.5; % 计算可见光红外图像的梯度 [visGx, visGy] = imgradientxy(visImg); [irGx, irGy] = imgradientxy(irImg); % 计算可见光红外图像的幅度方向 visAmp = sqrt(visGx.^2 + visGy.^2); visDir = atan2(visGy, visGx); irAmp = sqrt(irGx.^2 + irGy.^2); irDir = atan2(irGy, irGx); % 计算可见光红外图像的正交空间滤波器响应 visOrtho = alpha * visAmp + beta * visSal .* cos(2 * (visDir - gamma)); irOrtho = alpha * irAmp + beta * irSal .* cos(2 * (irDir - gamma)); % 将可见光红外图像的正交空间滤波器响应进行加权平均 fusionOrtho = (visOrtho + irOrtho) / 2; % 计算加权平均后的正交空间滤波器响应对应的图像 fusionImg = mat2gray(fusionOrtho); end
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值