spe t2 用于进行故障诊断 基于Gui

本文介绍了如何利用PCA(主成分分析)和SPE(单变量统计过程效率)统计量进行故障诊断。通过选择正常样本数据建模,预处理PCA数据,计算特征值和特征向量,建立主元模型,并计算控制限,最终发现第22个传感器数据过低,可能存在大量缺陷。同时,文章提到了基于GUI的设计,强调第一主成分在信息包含方面的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

)选择正常运行的样本数据作为PCA建模数据。

(2)对PCA数据矩阵进行数据预处理。

(3)计算协方差矩阵的前K个特征值以及特征值所对应的特征向量。

(4)建立主元模型。

(5)计算SPE统计量和Hotelling统计量的控制限。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab_python22

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值