1413:确定进制

【题目描述】

读入三个整数p、q和 r,然后确定一个进制 B(2<=B<=40) 使得 p × q = r。 如果 B 有很多选择, 输出最小的一个。

【输入输出样例】

输入:

6 9 42

输出:
13

【解题技巧】

从2到40进制轮流枚举,如果有正确的就直接输出,并结束程序,如果到最后都没结束就输出零。

【源代码】

#include<bits/stdc++.h>
#include<iostream>
#include<cstdio>
#include<cstring>
#include<iomanip>
#include<cmath>
#include<algorithm>
#include<vector>
#include<map>
#include<set>
#include<queue>
using namespace std;
int p,q,r,sum;
int change(int x,int i){//将x转换为i进制
    int k=1,a=x,b=0;
    while(a!=0){
        b=b+k*(a%10);
        k=k*i;
        a=a/10;
    }
    return b;
}
int main(){
    scanf("%d%d%d",&p,&q,&r);
    for(int i=2;i<=40;i++){//枚举所有进制
        if(change(r,i)==change(p,i)*change(q,i)){
            printf("%d",i);//输出正确的答案并结束 
            return 0;
        }
    }
    printf("0");//无解就输出“0”
    return 0;
}//♂_The_LYH_25_♂

### 如何在 Windows 系统中安装和配置 TensorRT #### 准备工作 为了确保顺利安装和配置 TensorRT,在开始之前需要确认以下依赖项已正确安装: - **操作系统**: Windows 11 (版本号22621.1413)[^1]。 - **显卡驱动**: 已更新至 GeForce Game Ready 驱动程序 531.29 版本[^1]。 - **CUDA Toolkit**: CUDA 11.8 应当已经完成安装,并验证其功能正常[^4]。 可以通过命令行工具 `nvidia-smi` 和 `nvcc -V` 来分别检查 GPU 的状态以及 CUDA 是否正确安装。如果这些命令返回预期的结果,则表明基础环境准备就绪。 #### 安装 cuDNN cuDNN 是 NVIDIA 提供的一个用于深度神经网络的库,通常与 CUDA 结合使用来提升性能。虽然它不是 TensorRT 的硬性需求,但在许多情况下它是必需的组件之一。按照官方文档中的指导下载适合当前 CUDA 版本的 cuDNN 文件包,并将其解压后的文件复制到相应的 CUDA 路径下。 #### 获取 TensorRT 访问 NVIDIA Developer Portal 登录账户后可找到 TensorRT 的发行版列表。选择适用于目标平台(即 Windows)且兼容所使用的 CUDA/cuDNN 组合的那个版本进行下载[^3]。注意阅读许可协议并同意条款之后才能继续操作流程。 #### 解压缩与设置环境变量 将下载得到的 TensorRT 压缩档案提取出来放到指定目录比如 `C:\Program Files\NVIDIA GPU Computing SDK`. 接着把该路径下的 bin 子文件夹加入系统的 PATH 变量之中以便能够调用相关二进制执行档;同时也需设定 LIBRARY_PATH 指向 lib/x64/ 下面的位置让链接器知道在哪里寻找静态或动态连接库。 #### 测试安装成果 最后一步就是验证整个过程是否顺利完成。可以尝试编译运行一些简单的样例程式码来看看有没有错误发生。例如下面这个 Python 小片段展示了如何加载一个预训练好的 ONNX 格式的模型并通过 TensorRT 实现推理: ```python import tensorrt as trt from tensorflow.keras.applications.vgg16 import preprocess_input, decode_predictions def build_engine(onnx_file_path): TRT_LOGGER = trt.Logger(trt.Logger.WARNING) with trt.Builder(TRT_LOGGER) as builder, \ builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)) as network,\ trt.OnnxParser(network, TRT_LOGGER) as parser: config = builder.create_builder_config() config.max_workspace_size = 1 << 30 with open(onnx_file_path,'rb')as model: if not parser.parse(model.read()): print('Failed to parse the ONNX file.') for error in range(parser.num_errors): print(parser.get_error(error)) return None engine = builder.build_serialized_network(network,config=config) return engine if __name__ == "__main__": onnx_model="path/to/vgg16.onnx" serialized_engine=build_engine(onnx_model) ``` 上述脚本仅作为演示用途,请根据实际项目调整参数设置[^2]。 ---
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值