协同过滤(Collaborative Filtering)是电商推荐系统的核心算法之一,它基于用户行为数据(如购买历史、评分、浏览记录)来发现用户或物品之间的相似性,从而为用户推荐感兴趣的商品。下面我将从原理到代码实现,详细介绍协同过滤在电商推荐中的应用。
一、协同过滤的核心思想
协同过滤分为两种类型:
-
基于用户的协同过滤(User-based CF)
- 原理:如果用户 A 和用户 B 对某些商品的评价相似(比如都喜欢商品 X、Y),那么 A 可能喜欢 B 喜欢的其他商品(比如商品 Z)。
- 电商场景:如果用户小明和小红都买过 iPhone 和 AirPods,且评价都是 5 星,小明还买过 MacBook,那么系统可能会给小红推荐 MacBook。
-
基于物品的协同过滤(Item-based CF)
- 原理:如果商品 X 被很多用户喜欢,且这些用户也喜欢商品 Y,那么 X 和 Y 是相似的。当用户 A 喜欢 X 时,系统会推荐 Y。
- 电商场景:如果很多用户同时购买了咖啡和奶精,当用户小李购买咖啡时,系统会推荐奶精。
二、协同过滤的优缺点
优点 | 缺点 |
---|---|
无需商品内容信息,仅依赖用户行为数据 | 数据稀疏性问题(用户只评价了少量商品) |
实现简单,易于理解 | 冷启动问题(新用户 / 新商品难以推荐) |
能发现用户潜在 |