协同过滤算法

协同过滤(Collaborative Filtering)是电商推荐系统的核心算法之一,它基于用户行为数据(如购买历史、评分、浏览记录)来发现用户或物品之间的相似性,从而为用户推荐感兴趣的商品。下面我将从原理到代码实现,详细介绍协同过滤在电商推荐中的应用。

一、协同过滤的核心思想

协同过滤分为两种类型:

  1. 基于用户的协同过滤(User-based CF)

    • 原理:如果用户 A 和用户 B 对某些商品的评价相似(比如都喜欢商品 X、Y),那么 A 可能喜欢 B 喜欢的其他商品(比如商品 Z)。
    • 电商场景:如果用户小明和小红都买过 iPhone 和 AirPods,且评价都是 5 星,小明还买过 MacBook,那么系统可能会给小红推荐 MacBook。
  2. 基于物品的协同过滤(Item-based CF)

    • 原理:如果商品 X 被很多用户喜欢,且这些用户也喜欢商品 Y,那么 X 和 Y 是相似的。当用户 A 喜欢 X 时,系统会推荐 Y。
    • 电商场景:如果很多用户同时购买了咖啡和奶精,当用户小李购买咖啡时,系统会推荐奶精。

二、协同过滤的优缺点

优点 缺点
无需商品内容信息,仅依赖用户行为数据 数据稀疏性问题(用户只评价了少量商品)
实现简单,易于理解 冷启动问题(新用户 / 新商品难以推荐)
能发现用户潜在
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值