RAG(Retrieval - Augmented Generation,检索增强生成 )是结合信息检索与生成式 AI 的技术框架,核心是让生成模型借助外部知识检索,弥补自身知识局限,提升输出质量,具体可从以下维度深入理解:
一、核心模块与流程
- 检索器(Retriever)
- 功能:从构建好的知识库(文档库、向量数据库等)里,找和用户查询相关的信息。比如做客服机器人时,从产品手册、常见问题文档里筛内容。
- 技术:
- 传统检索:用 BM25、TF - IDF 等,靠关键词匹配找文档,像搜索引擎初步筛选网页。
- 语义检索:借 BERT、DPR 等模型,把文本转成向量,比 “字面匹配” 更懂语义。比如 “手机咋连 Wi - Fi” 和 “Wi - Fi 连接步骤”,语义向量接近就会关联。
- 生成器(Generator)
- 功能:拿检索到的信息 + 用户问题,生成自然语言回答。比如基于产品手册片段,给用户讲 “设备重启步骤”。
- 技术:用 GPT - 3、T5 等大模型,也能结合行业定制模型,确保回答通顺、贴合需求。
- 融合逻辑(Fusion,部分流程隐含)
- 作用:把检索结果和用户 query 结合,决定咋用这些信息生成回答。可以简单拼接(把文档片段直接塞给模型当参考),也能加权融合(给不同相关性的片段设权重)。
二、解决的核心问题(对比纯大模型)
- 知识更新滞后
- 大模型训练数据有 “截止时