在问答库的问题相似度匹配中,通过 “粗选→细选” 的两级策略可以大幅提升匹配效率,核心思路是先用低成本方法快速过滤无关候选,再对少量高潜力候选进行精准计算。以下是具体实现思路,涵盖技术选型、流程设计和优化方向:
一、核心目标与原则
- 效率优先:粗选阶段追求 “高召回率 + 低计算成本”,确保不漏掉潜在相似问题;细选阶段聚焦 “高精度匹配”,提升结果准确性。
- 分层过滤:通过多维度特征逐层缩小候选范围,避免对全量数据进行高复杂度计算。
- 动态适配:根据问答库规模、问题类型(如短文本、长文本、专业领域术语)调整粗选和细选的策略。
二、粗选阶段:快速缩小候选范围
粗选的核心是用轻量级方法过滤掉明显不相似的问题,保留可能相关的候选集(通常控制在全量数据的 5%-20%)。常用策略包括以下几类:
1. 基于规则与关键词的过滤
通过简单的文本特征快速筛选,适合结构化或关键词明确的场景。
- 关键词匹配:
- 提取输入问题的核心关键词(如名词、专业术语),通过倒排索引在问答库中检索包含相同关键词的问题。例如,输入问题含 “Python 列表去重”,则优先召回含 “Python”“列表”“去重” 的问题。
- 可设置阈值:候选问题需包含输入问题中≥N 个核心关键词(N 根据问题长度调整,如短问题 N=1-2,长问题 N=3-5)。
- 停用词与低频词过滤:
预处理时过滤 “的”“是” 等无意义停用词,以及问答库中出现次数<M 的低频词(如罕见错别字、特殊符号),减少干扰。 - 领域 / 意图标签匹配:
若问答库已按领域(如 “数学”“计算机”)或意图(如 “定义”“步骤”“故障排