Problem Description
My birthday is coming up and traditionally I’m serving pie. Not just one pie, no, I have a number N of them, of various tastes and of various sizes. F of my friends are coming to my party and each of them gets a piece of pie. This should be one piece of one pie, not several small pieces since that looks messy. This piece can be one whole pie though.
My friends are very annoying and if one of them gets a bigger piece than the others, they start complaining. Therefore all of them should get equally sized (but not necessarily equally shaped) pieces, even if this leads to some pie getting spoiled (which is better than spoiling the party). Of course, I want a piece of pie for myself too, and that piece should also be of the same size.
What is the largest possible piece size all of us can get? All the pies are cylindrical in shape and they all have the same height 1, but the radii of the pies can be different.
Input
One line with a positive integer: the number of test cases. Then for each test case:
—One line with two integers N and F with 1 <= N, F <= 10 000: the number of pies and the number of friends.
—One line with N integers ri with 1 <= ri <= 10 000: the radii of the pies.
Output
For each test case, output one line with the largest possible volume V such that me and my friends can all get a pie piece of size V. The answer should be given as a floating point number with an absolute error of at most 10^(-3).
Sample Input
3
3 3
4 3 3
1 24
5
10 5
1 4 2 3 4 5 6 5 4 2
Sample Output
25.1327
3.1416
50.2655
这题的单词这么多有点晕了,其实题意就是: 你要开一个派对,你邀请了m个朋友,在你家里有n个派,你可以切割这些派使他均分给的m个小伙伴(包括你自己),但是这道题目的坑点在于精度。。。。。。。
一言不合直接上代码:
#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<math.h>
using namespace std;
#define pai acos(-1.0) //巨坑之点,看了大佬的才知道要求pai的精度这么高
#define N 10010
int main()
{
int i,j,n,m,k;
int T;
double num[N],le,ri,mid; //由于要卡精度,都要用double
scanf("%d",&T);
while(T--)
{
le=ri=0;
scanf("%d%d",&n,&m);
m+=1;
for(i=0;i<n;i++)
{
scanf("%lf",&num[i]);
num[i]=num[i]*num[i]*pai;//num储存每一个派的体积
ri=max(ri,num[i]);//ri为二分为接下来二分的右边界,故设为最大值
}
while(ri-le>1e-7)//二分卡精度,到寻找到小数点后7位时跳出
{
mid=(ri+le)/2;//更新mid
k=0;
for(i=0;i<n;i++)
{
k+=int(num[i]/mid);//计算当前的派可以分成几份
}
if(k>=m)
le=mid;//这里不和以前一样le=mid+1,是因为这里二分跳出的条
else //件是用来卡精度的,是ri-le>.....,所以要注意
ri=mid;
}
printf("%.4lf\n",mid);
}
return 0;
}