激光雷达和相机早期融合

通过外参和内参的标定将激光雷达的点云投影到图像上。

 传感器标定

首先需要对激光雷达和相机(用于获取 2D 图像)进行外参和内参标定。这是为了确定激光雷达坐标系和相机坐标系之间的转换关系,包括旋转和平移。通常采用棋盘格等标定工具,通过同时获取激光雷达点云和相机图像中棋盘格的特征点,来计算出两种传感器之间的相对位置和姿态。

深度赋值

对于 2D 图像中的每个像素,在投影后的点云中查找与之对应的点(可以通过像素坐标匹配)。一旦找到匹配的点云点,将该点的深度值(通常是点云点到激光雷达中心的距离)赋给 2D 图像中的相应像素,这样就得到了深度图像。
分别展示了检测和分割的效果。

 代码参考了Vision-Fusion-Early-Fusion,再次基础上做了一些改进https://github.com/longmangpang/ultralytics-Vision-Fusion-Early-Fusion

https://github.com/longmangpang/ultralytics-Vision-Fusion-Early-Fusion C++

### 激光雷达相机数据融合的 Windows 实现方案 在 Windows 环境下实现激光雷达相机的数据融合,主要涉及以下几个方面:硬件设备配置、软件开发环境搭建以及算法设计。 #### 1. 外参内参标定 为了完成激光雷达相机之间的坐标系转换,需要对外参(旋转矩阵平移向量)内参(焦距、主点偏移等参数)进行标定。这一步骤可以通过使用棋盘格作为标定工具来完成[^1]。具体方法如下: - 使用摄像头拍摄多张不同角度下的棋盘格图片。 - 同步采集对应的激光雷达点云数据。 - 利用计算机视觉库 OpenCV 提供的功能提取棋盘格角点,并匹配到点云中的对应特征点。 以下是基于 Python 的简单代码示例,展示如何利用 OpenCV 进行相机标定: ```python import cv2 import numpy as np # 设置棋盘格尺寸 chessboard_size = (7, 6) # 准备对象点,形如(0,0,0), (1,0,0), (2,0,0) ....,(6,5,0) objp = np.zeros((np.prod(chessboard_size), 3), dtype=np.float32) objp[:, :2] = np.mgrid[0:chessboard_size[0], 0:chessboard_size[1]].T.reshape(-1, 2) # 存储对象点图像点 objpoints = [] # 3d point in real world space imgpoints = [] # 2d points in image plane. images = ['calibration_image_{}.jpg'.format(i) for i in range(1, 11)] for fname in images: img = cv2.imread(fname) gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) ret, corners = cv2.findChessboardCorners(gray, chessboard_size, None) if ret: objpoints.append(objp) imgpoints.append(corners) ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(objpoints, imgpoints, gray.shape[::-1], None, None) print("Intrinsic matrix:\n", mtx) ``` #### 2. 数据同步与时钟校准 由于激光雷达相机的工作频率可能不一致,在实际应用中需考虑时间戳对齐问题。可以借助 ROS 或其他实时操作系统提供的消息过滤器功能来进行精确的时间同步处理。如果是在纯 Windows 平台上,则可通过编写自定义程序手动调整两者的采样周期差值。 #### 3. 中级传感器融合算法 根据引用资料说明,这种类型的融合属于中间级别融合[^2]。它并不涉及到目标追踪环节,而是专注于将来自两个独立模态的信息结合起来形成更丰富的表示形式。一种常见做法是先将三维空间内的点投影至二维平面上再叠加像素强度信息;另一种则是直接构建四维体素网格结构存储综合属性。 对于前者而言,可参考以下伪代码片段演示其基本逻辑流程: ```cpp // 假设已知变换关系 T_lidar_to_camera K_matrix void projectLidarToImage(const std::vector<PointXYZ>& lidar_points, const Eigen::Matrix4f& T_lidar_to_camera, const Eigen::Matrix3f& K_matrix, cv::Mat& output_image){ float fx = K_matrix(0, 0); float fy = K_matrix(1, 1); float cx = K_matrix(0, 2); float cy = K_matrix(1, 2); for(auto &point : lidar_points){ Eigen::Vector4f homogeneous_point(point.x, point.y, point.z, 1.0f); Eigen::Vector3f transformed_point = T_lidar_to_camera * homogeneous_point; if(transformed_point.z() > 0){ // 只保留前方可见区域 int u = static_cast<int>(fx * transformed_point.x() / transformed_point.z() + cx); int v = static_cast<int>(fy * transformed_point.y() / transformed_point.z() + cy); if(u >=0 && u <output_image.cols && v>=0 &&v<output_image.rows ){ uchar intensity_value = calculateIntensityFromPoint(point); output_image.at<uchar>(v,u)=intensity_value; } } } } ``` #### 4. 开发框架选择 考虑到跨平台兼容性社区支持度等因素,在 Windows 上推荐选用 Point Cloud Library(PCL),Open3D 或者 TensorFlow Lite 等开源项目辅助快速原型迭代测试工作。这些工具包均提供了详尽文档指导开发者高效完成各项任务需求。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值