诞生在上世纪80年代的FPGA芯片,就像是侏罗纪早期就存在的鲟鱼。人工培育后的可食用品类,加工打理很费劲,但味道无比鲜美。
因仿真加速而生,算力加速而兴,AI加速而盛。
2023年初,语言大模型横空出世,火遍全球之际,国产FPGA的安路科技市值,曾经与寓意AI物种大爆发的寒武纪,不相上下,同为200亿元量级。
随后的这两年,硬生生走出了一个中国版本的"赛灵思VS英伟达"。
现在尽管年营收差异不大,但按照是不是“AI算力芯片”估值,走势完全不同。
碳基智能的人类,一直努力追求的硅基智能,进入信息化社会后,从马力到算力,从瓦特到比特的进程,驶入快车道。
从上世纪40年代开启的电子管,到60年代的晶体管,70年代进入的集成电路,80年代的大规模集成电路,现在开启了“万物皆摩尔定律”的计算平民化趋势。
1990年,上升巅峰期的日本,承载人工智能野望的专家系统,投资8.5亿美元的第五代计算机,率先在追赶前沿技术的学术界遇冷。
厚积未薄发,但念念不忘,总有回响。
其成果沉淀更多体现在超级计算机的研发进展中,在今天TOP500的榜单上,还留有曾经的辉煌印记。
如今普惠大众的微型计算机,具有无限弹性扩展能力的超级数据中心,成为业界争相竞逐的倚天剑和屠龙刀。
前者更轻盈。
现在物联网终端采集数据用的MCU芯片,可能售价仅为几元钱,其算力已经超过上世纪90年代的整台个人电脑。
后者更厚重。
既拥有海量数据,也部署大量极致性能的硬件加速器,成为进行AI训练和推理的跑马场。
由创新和资本两大要素推动的AI极速进化史,将重新书写人类史上最为高效的经济系统。
语言,围棋、艺术等“纯”脑力人类优势项目已经被AI模型陆续“攻破”,以至于网友在2025年元旦第一时间发出"人类作为地球上最聪明物种的最后一年到来了"的感慨和调侃。
2022年底发布的生成式人工智能ChatGPT,不管是否会像英伟达黄教主的说法,可能演进为100万亿美元的新产业。
随着OpenAI 2个月活跃用户过亿的消息传出,闻风而动的股市先涨为敬。
一路狂飙,到了2024年,全球股市最大的投资主题还是AI。
不论是英伟达GPU算力一骑绝尘,市值登顶3万亿美元;还是率先吃到AI应用软件红利的Palantir,股价大涨380%。
对AI生活的美好向往,逐步发展到股民对股市的胡思乱想。
时过并不境迁。
2023年初,花了130亿美元真金白银的微软,上涨20%倒也罢了,号称也有布局的安全公司三六零,酒满敬人,先连干三杯涨停板,还意犹未尽,也多少可以理解。
就连以散户寡机构投资者众的港美股成熟资本市场,机构下手更重。
“人均985,年薪超百万”闻名江湖的知乎,也来了个50%的单日跳涨。
2024年底,从事移动广告业务的汇量科技,在AI光环照拂下,也有4个月10倍的骄人战绩。
至于选择炒作哪些公司,最终还是主要依靠股民,发挥想象力脑补,二十年过去了,还是熟悉的配方,同样的味道。
与20年前的亿安科技,公告将从事“碳纳米管双电荷层电容电池的开发”等题材,支撑高股价逻辑类似。
当年是只要诺贝尔奖能颁奖的技术,股市总能找到已经布局的上市公司,现在换成了可触及的AI体验,网络扩散规模效应更甚。
脑大的到喜马拉雅,波大的去做短视频,两者齐全颜值俱佳的上电视台,主持曾经两岸三地都可收看的文茜小妹大。
一级市场上更是热度狂飚,在创投圈素有尤达大师之称的局中人,YC前掌门人风头正劲。
从AI大模型中即将生长出全新的产业生态,未来可期。
各行业都将经历数字化,自动化,到智能化。
现在的AI Agent也好,软件产品里的API也罢,技术本质上,都是不同程度的自动化处理能力。
软件不再只是让硬件运转的工具,而是新的商业附加值的来源。
建立在芯片算力上的硬件加速,在C端,让应用软件更流畅,在B端,使数据处理更高效。
从数据中生长出全新的AI产业生态,未来可期,未来已来。
当商业头脑发达的还在热议如何利用GPT模型致富,手快的甚至已经用开发的API搭梯子,落袋为安。
虽然AI已到了被马斯克视为“强得可怕”的新阶段,一半好消息,另一半是用于AI训练的数据,可能在2030年到2040年之间耗尽。
实际消耗速度比预期的要快得多,据称在2024年就已全部耗尽。
软件定义一切,在计算机领域更是常态。
影响力最大的,可能是始于1969年的IBM反垄断案,打破“软硬件捆绑销售”的行业惯例,也从此开启了计算机的繁荣时代。
同时也催生了微软,甲骨文等“纯”软件巨头。
成本优先,对于财大气粗的跨国巨头,也是奉行不悖的圭臬。
2018年,楷登电子将帕拉丁上云,为用户提供仿真加速规模的弹性扩展服务,长远目标是多达50000-70000家系统厂商。
这些云服务厂商,包括入场造芯局相对最晚,把未来硬件加速全部身家都押宝商用FPGA的微软,也包括在硬件领域从不缺席,一直引领潮流的IBM。
IBM收购的Netezza大数据一体机,不再像算力加速时代那样闪耀,一度沉寂,长达六年没有升级更新。
在云时代光芒暗淡,被视为星辰即将陨落大海。
2020年6月,IBM发布消息,宣称将在云中重启,提供数据即服务,“作为一个主要里程碑,续写其传奇故事的下一个篇章”。
颇有些身兼民革中央、国家文联和曲艺家协会的冯巩副主席,在央视登场表演相声的经典开场白,"亲爱的粉丝们,我想shi你们了"的浓浓春晚味道。
冯唐未老,李广待封。
数字化本质是关于连接的技术,时间轴停留在每一个命令行的API里。
虽然普适计算创始人Mark Weiser曾说过“最深刻的技术,融入生活,变成生活。”
但一个网络的价值,未必总是遵循梅特卡夫定律(Metcalfe's Law),与接入网络中成员数的平方,成正比关系。
当ChatGPT曾经演绎2个月用户过亿的增长神话时,比这个更快创造奇迹的,可能是已走入历史,曾经人手必备的行程码和健康码。
前者着眼于未来,后者立足于现在。
短期看需求,长期看供给。
01
硬件加速一切的鱿鱼游戏
芯片产业就像是老大吃肉,老二喝汤,其它的则被扔到斗兽场。
以CPU芯片为例,一直以来都是巨头之间的游戏。既要入局早,还得出手壕。两大指令集家族的竞争,从上世纪80年代开始,缠斗至今。
诞生于工业社会的两大CPU家族,江湖六大门派,武林盟主之争,在人类步入信息化的1998年前后,更趋白热化。
如果说运行在CPU算力上的数字仿真器,是为用户IC设计画素描,那么运行在FPGA硬件速度上的仿真加速服务,则有着3D立体的克隆效果。
由软件实现的数字仿真过程运行速度有限,很难做到 100%代码覆盖,导致那些深度隐藏的问题,将不可避免的逃逸,只能在FPGA运行阶段以在线调试方式加以解决。
流片没有保险可买,先进EDA工具的加持,把以往建立在人工经验基础上的运气成分,正无限趋近于零。
一直走在异构计算,硬件加速最前沿的EDA硬件辅助验证,为IC设计提供硅前验证,是最为高效的调试验证能力。
已成为头部IC用户的心头好,不可或缺。
初创于1988年Quickturn公司,作为提供现代EDA硬件辅助验证服务的开山鼻祖,因大幅加速英特尔奔腾处理器,一战成名。
对于拥有数字仿真器、硬件仿真、原型验证三大硅前验证产品线的少数EDA供应商,具备提供从FPGA位流物理层到设计逻辑层True RTL全可视化调试能力,用于查找设计中可能深度隐藏的缺陷(Bug)。
更是具备钞能力,拥有稀缺性。
逻辑层代码,大多与物理层无关,也更容易理解,但与芯片硬件直接关联的二进制数据,至今更多是由硬件仿真平台等少数复杂专家级系统完成。
EDA公司提供的仿真加速器,作为专供众勇士精心打造的锋利冷兵器,打斗越激烈,越是一路热销,水涨推动船高。
CPU芯片家族两大门派,都追求CPU的极致计算性能,一派是经典CISC复杂指令集,另一派则秉承简约不简单的设计风格,提供精简指令集RISC架构。
前者在数据中心有多成功,在端侧就多乏力,比如“昔日”霸主英特尔。
在芯片产业已经进化到极致专业化服务的现在,其从设计到制造一条龙的IDM模式,也从原先的独步江湖,成就霸业,逐渐变成了“昨日黄花”,辉煌不再。
在激烈竞争中胜出的两大门派,分别在移动端SoC芯片,或者数据中心高性能处理器,凭借90%以上的市场份额,笑傲江湖。
微软和$英特尔(INTC)$ 的Wintel联盟,称霸个人终端电脑,走进千家万户,大幅缩小了数字鸿沟。
在数据中心,则是英特尔和$AMD(AMD)$ 公司,在七剑下天山的阵法中,成为最耀眼的两大主角。
缠斗一直延续到现在的AI加速时代。
2014年,可能也是英特尔公司独占鳌头,最为高光时刻。
在这一年,亏损且债务缠身,几近“消失”的超威公司,迎来首任女掌门人,系出IBM公司的苏姿丰博士,力挽狂澜,扶大厦之将倾。
最重要的事情是为技术选择对的市场,直接带领超威,杀入看似最没有胜算的数据中心服务器市场。
重生之后的超威,股价一飞冲天,现在市值已远超英特尔。
现已成为硅谷最佳首席执行官,科技行业最有影响力的女性之一。
2015年AMD股价最低时1.61,据说没有被团灭的原因,是Intel不想被扣上“垄断”的高帽。
最高超过160美元,上涨100倍有余。
从未实施现金分红,在A股市场上,也可赋名铁公鸡,不太“合规”。
英特尔同期股价20多,在算力加速向AI加速狂飙的黄金岁月,曾摸高到65美元,硬生生走出了一波蓝筹股行情,更类似国企银行股的稳重。
就在CPU的江湖格局,被视为两大门派三国演义,大局笃定的次年,RISC-V商用处理器,又从斜刺里杀出。
面向万物互联,集开源、中立、精简三大标签于一身,2010年时,影响力更多还只是局限在学术界。
2015年,老牌风投机构Sutter Hill,用500万美元的A轮独家投资,就像倚天屠龙记里的明教圣火令,宣告更为庞大的RISC-V门派,正式入局参战。
这家曾在计算时代拥有众多成名作的顶级风投,1993年投资DSA芯片王者英伟达,云时代命中数据仓库云原生独角兽(Snowflake),在万物互联的智能时代,又选中RISC-V作为创新挑战者。
其投资逻辑简单粗暴。
半导体商业模式濒临衰退,计算模式正在改变,以及摩尔定律不应该只是富人游戏。
踩在了市场和技术共振节奏上的SiFive公司,在2022年获得1.75亿美元投资后,晋升为新涌现庞大阵营中的首家独角兽。
在全球愈演愈烈的芯片竞争中,RISC-V也成为众多新起大国亲睐的“国选”处理器。
传言就连俄罗斯,也指望借此破解芯片“断供”。
2022年7月的嵌入式世界博览会,根据其发布数据,市场上部署的RISC-V IP核,已经达到100亿颗,比SoC芯片王者之师还少用了5年。
从2010年诞生开始,仅用时12年达成这一了不起的成就。
ARM达到同样的部署规模,用时17年。
2024年RISC-V中国峰会,倪光南院士更是表示,RISC-V IP核出货量已达130亿颗,每年新增部署数量超10亿个。
就像是新鸳鸯蝴蝶梦吟唱的那样,有新人笑,就会有旧人愁。
芯片不只是比拼面子上的硬件性能,也是里子内涵的软件生态。
一边是冉冉升起的潜力新星,另一边就会有步履沉重落寞巨人。
某种程度上,性价比即便不是商业的最高真谛,也是最优选项之一。
基于Power系列CPU的服务器,更先进,自然也更为昂贵,一直是IBM 著名的“蓝色基因”超级计算机中的主打芯片。
在全球超算排行榜上,从2004到2008年,曾经霸榜“世界第一”长达3年多。
是NASA,能源局、气象局等一众机构大客户的算力扛把子。
即便是相对低端的PowerPC嵌入式处理器,也是芯片中的贵族。
主要为航天航空不差钱的客户服务。
2018年时,仅是对PowerPC机载软件进行安全认证的第三方测试工具,市场报价还高达500万元之巨。
航天领域使用的RAD750 CPU,与苹果公司1998年iMac中的处理器,属于同款。
都是采用PowerPC架构。
作为业界最著名的抗辐CPU,虽极为昂贵,但也滋润了好几十年。
2009年,NASA 研发的空间高性能计算机(SpaceCube),使用赛灵思Virtex第四代、第五代等商用现货FPGA型号,已成功应用于多个空间任务。
2016年,中科院“墨子号”通信卫星,也开始使用国产Virtex-4 SX55作为载荷处理平台。
与RAD750相比,除了将数据处理能力提升10-100倍,还大幅降低了功耗和成本支出,一直延续到现在的太空板机智能时代。
异构计算技术,除了用于研发先进的空间高性能计算机,胜任空间2.0时代日益上升的数据处理需求之外,类似的“低成本”应用设计理念,还能够满足任何级别的端点安全要求。
按照英特尔的观点,这种通过无尽冗余和故障安全相结合,实现软核逻辑认证的方式,同样适用于功能安全要求极高的汽车电子等行业。
出于市场和软件生态等多重考虑,赛灵思在28nm工艺之后,也放弃原先作为FPGA内嵌处理器的PowerPC,转为使用ARM。
更为便宜开放的RISC-V,则成为除了三家头部厂商外,也是各个FPGA芯片厂商选择内嵌处理器的“心头好”,绝对新宠。
2024年,AMD收购赛灵思两年之后,也将其原有的Microblaze软核处理器,升级为RISC-V架构的Microblaze-V。并且专门针对安全关键系统应用,整合了汽车电子常用的双核锁步技术(LockStep)、航天航空必用的三模冗余(TMR)等安全机制。
在互联网创富神话暂时停下来喘口气的2001年,图片编辑、视频处理等多媒体应用日渐盛行,美日两国的科技巨头,宣布联合投资40亿美元,设计具有划时代意义的多核异构芯片。
这款基于PowerPC架构的DSA芯片,初衷是巩固索尼在PS3游戏机市场的领先优势,取自生物细胞Cell,寓意既单打独斗,也可兵团作战。
只是再没有同样是三家公司抱团的ARM幸运。
由IBM、索尼、东芝联合打造的新型处理器,定位为承担CPU和GPU两大计算任务的Cell处理器。
消息一出,全球瞩目。资本市场上,股价应声大涨。
2008年,IBM用12960片Cell处理器,开发的超级计算机“走鹃",位列全球TOP500榜单头名。
这也是Cell发布后,最为高光时刻之一。
能够精心打磨独具匠心的应用是一回事,能够批量提供标准化产品,最终具有普惠使用价值,又是另外一回事。
被称为史上最难用的开发环境,使其没能复制英伟达GPU的神迹,到8年前彻底退出。
2010年11月,美国空军用购买的1760台PS3游戏机,组成秃鹫集群超级计算机,虽然再次证明了Cell兵团作战能力,却无力挽回颓势。
从2000年立项,曾经被寄予无限厚望的先进处理器,2009年宣布停止研发,隐入尘烟,到2017年彻底退出,黯然落幕。
与Cell芯片的高开低走相比,几乎在同一时期,AI时代的霸主,$英伟达(NVDA)$ 则凭借创新的CUDA编程模型,将工程师从繁琐的底层汇编中解放出来,率先在超级计算机市场打出名声。
首先在这个"小但极为重要"的领域,逐渐占据垄断地位。
聚焦一个“很小却非常重要的问题(Narrow but Important Mission Problems)",再扩展到更大的领域。
直到在AI时代真正展现出王者之风。
英伟达用软件构建的"结界",同样也是所有芯片厂商的终极梦想。
2014年时,相对于CPU,GPU更像只是“初露锋芒”的小弟。
当时全球七大超级数据中心率先进入异构计算加速时代,都在陆续引入的FPGA,作为新型数据中心的关键DNA,应用前景同样值得看好。
Altera和Xilinx两大头部厂商,也是平分秋色,几乎各占一半江山。
2015年,英特尔以167亿美元的高价将前者并购退市,作为Intel(PSG)部门,开启数据中心优先战略。
2016年,赛灵思新的领导班子上台,推出自适应计算概念。
2017年,硬件厂商"变软"的趋势,从GPU延展至FPGA,开始在头部厂商显现。
2018年,英特尔推出OneAPI项目,以简化跨CPU、GPU、FPGA、人工智能和其它加速器的各种计算引擎的编程开发。
2019年,发布oneAPI beta版本,"从今天受限、封闭的编程方法演变到一个开放的、基于标准的模式,助力开发人员实现跨架构的参与和创新"。
同年Xilinx推出Vitis AI平台,为云端、边缘和混合计算应用加速提供了统一编程模型,并在GitHub上开源。
2020年,推出原厂Alevo系列标准加速板卡。
既有仿真加速器Zebu架构的影子,也借鉴了亚马逊在FPGA云服务中,引入的软件开发“Shell/Role”分区理念,用Shell实现与云服务OS的交互等。
在传统的FPGA硬件工程师看来,Shell分区简直是浪费硬件资源。
特别是对于习惯了FPGA不纳入操作系统管理,只是作为"裸卡"使用的行业用户和少数硬件高手,更是如此。
赛灵思的设计开发文件.dcp,在数据中心等更偏软件习惯的行业使用时,也改成云感十足的容器二进制文件.xclbin。
2021年初,微软引入Alveo加速卡,为全球54个区域的用户,提供云上加速服务:“今天本地调试,明天云上加速”。
并宣告进入AI平民化时代。
2022年,AMD以股权互换方式,完成对赛灵思的零元购,后者退市成为AMD的自适应嵌入式系统部门。
2023年10月,英特尔宣布由桑德拉·里维拉担任“分拆”后独立运营的可编程事业部首席执行官。
除了重启IPO上市进程之外,更希望重新赢回FPGA在工业、汽车、国防和航空航天等高速增长市场的应有份额。
& 一架F35战斗机,使用超过3500块芯片,其中就包括208片FPGAs;
& 防务领域一套先进的相阵控雷达系统,使用的FPGA数超过1000片
& 2017年微软数据中心用25万块FPGA,构建当时最大AI(BrainWave)
& 2020年时,赛灵思FPGA在汽车行业的累计出货量,高达19000万片
2024年9月,AMD在上海举办“FPGA功能安全专业研讨会”,帮助用户更好应对汽车、工业、航天等市场,在安全和可靠性方面,“前所未有”的要求。
2025年最新传闻是,英特尔可能会被“神秘买家”整体收购。
02
软件为王的异构计算时代
2024年底,咨询公司Semianalysis经过深度调研后,在其发布的评测报告中,直指超威GPU软件在质量和易用性上面临挑战:
未经大量调试,几乎很难进行AI模型的训练。
以至于需要最佳CEO苏姿丰博士亲自下场回应:"批评性的反馈也是一份礼物,我们在客户和工作负载优化方面已投入了大量的工作,但我们还可以做更多的事情来支持广泛的生态系统"。
2006年,就在“系出名门”的Cell芯片,依靠打榜超算TOP500赢得高光的同一年,英伟达发布了名为CUDA(Compute Unified Device Architecture)的编程软件。
目的是将GPU芯片,从图形图像领域专用处理器“DSA”,拓展为大规模并行计算的通用芯片(GPGPU),也从此逐步筑就了其在业内独一无二的技术护城河。
而拥有CUDA加持的英伟达,即便没有一帆风顺,也是足够乘风破浪。
软件是芯片硬件的放大器和倍增器。
贝佐斯在亚马逊股价处于低谷时,在致股东的年度公开信中,曾引用股神的导师名言:“短期看,股市是投票器;时间足够长,才是称重机。”
在CUDA软件还没有展示其重力加速度的时候,股市先表现出其短期投票器的本色。
英伟达公司股价,也随之一度跌至低位冰点,市值探低至43亿美元。
2008年,英伟达在魔都两大顶尖高校的校招中,宣传T恤上,印着公司所有的员工头像。当时公司只有几百人,一件T恤够装了。
在大多数应届毕业生看来,这家“做显卡”的公司,吸引力不但远不及CPU霸主英特尔,甚至还“比不上”FPGA行业的二阿哥,正处于上升期的Altera。
当年比现在年轻17岁的黄教主,就有了“打败对手不是目标”的底气和自信:
“我在创业之前就告诉自己,对手既不会给你提供研发的方向,更不会告诉你客户的新需求,而这两者才是恰恰是一家企业生存的根本。
尽管如此,创业之初我仍然犯过错误,这个错误并非是模仿对手,而是刻意地执行差异化战略,研发与对手完全不同的产品。”
GPU芯片原先的应用编程,曾经也需要使用汇编语言,涉及大量芯片底层的机器指令码。
2016年时,等到CUDA真正展现威力,大幅降低应用编程门槛,股价也随之一路狂奔,彻底甩开FPGA老大赛灵思。
2020年时,其全球开发人员数量突破250万,2024年,已突破400万。
本以为是巅峰,哪知才是神话序曲。
进入AI加速时代后,再也回不到从前。走势就像茅台也曾一度探底23元/股,2008年的300元,也只是茅王的序幕类似。
好机会的一个重要特征,是往往能够带来更多更好的机会:
脸书的元宇宙需要大算力,来一波;
微软的OpenAI训练大模型,再刷一波。
2024年,当股市真正展现出称重机的本质时,公司市值超3万亿美元。并引领整个半导体行业,一派欣欣向荣的繁荣景象。
现在市值是英特尔的30倍以上,至于其它老牌芯片巨头,就更显落寞了。
MIPS计算机系统公司,源于太阳微系统(Sun)公司的Sparc架构,难掩凋零;就连蓝色巨人IBM的Power系列,在服务器市场叱咤风云,如今也是势头不再。
但在云端两侧的广阔地带,至今仍留有前朝芯球大战的诸多遗珠。
2009年,没能挺过2008年金融危机的Sun,先是IBM尝试收购未果。
仅隔3月,被甲骨文以74亿美元拿下。除了顺带收集数量庞大的专利,便于今后打最擅长的专利诉讼战。
甲骨文在完成收购后,也将自家大数据一体机中使用的CPU,更换为旗下的Sparc处理器,并把进军数据库硬件加速服务的定位为:
Software in Silicon
通过在CPU直接加入硬件算力加速器,以获取更为丰富的功能,快速开发更加可靠和运行速度更快的数据库应用。
2017年,甲骨文宣布放弃Sparc处理器业务。与Cell处理器一样,悄然退出,成为历史。
日本富士通公司,作为该架构硕果仅存的高端处理器供应商,虽然曾在2011年勇夺超级计算机TOP500冠军,2016年后也转向ARM服务器。
国内创业板上市公司航宇微,二十年前发布国内首款基于SparcV8架构的抗辐照芯片,激起浪花朵朵。
按照其董秘和股民交流回复,2021年采用ARM架构研制的人工智能处理器芯片,主要面向智能安防、机器人和智能制造等应用领域。
而被称为“时代眼泪”的Sun公司,虽然在主战场谢幕,但颇有一鲸落,万物生的意境。
现在从其衍生出来的著名企业和投资机构,超过330家。
对当今世界的信息产业格局,仍拥有巨大影响力。
在DSA领域登顶的英伟达,除了创始人黄教主出自LSI公司之外,其余两个联合创始人,均来自Sun公司。
2019年OpenAI的投资股东中,自然也少不了技术风投四大天王之一的Khosla Venture。
这家由Sun公司的原联合创始人,发起创立的风险投资机构,在2022年度由初创企业投票选出的最信任投资机构排名,高居榜首。
2010年,全球移动互联网的开局之年,智能手机加快普及应用,进一步推高海量数据累积。
也体现在存储加速(SSD)市场等细分行业。
次年成立的忆恒创源,主业是从巨头的大数据一体机设备中,将Flash存储模块进行“剥离”后单独提供服务,2021年首次申报科创板。
从其创立的2011年,到发起IPO冲击的十年时间,刚好经历FPGA应用,从算力加速到AI加速整个周期,应用市场的两次跳涨转折点。
按照Gartner的数据,企业SSD的市场规模,已从2014年的57.7亿美元,激增到2020年的169.3亿美元。
既有Fusion IO等快速崛起的新锐,也包括华为,西部数据,美光,惠普,以及英特尔等大厂,置身其中。
再次验证FPGA在垂直细分行业的应用,趋势确立规模上量之时,便是其功成身退之日。包括华为和亿恒创源,都经历了将主控芯片,从FPGA升级为ASIC的过程。
不只是服务于存储加速,FPGA芯片与生俱来的硬件编程能力,无需流片可直接设计为类DSA芯片使用,具有丐帮降龙十八掌的妙用。
在仿真加速市场,有楷登电子的帕拉丁,使用专用DSA芯片,同样也有Zebu为代表的商用FPGA庞大阵营,分庭抗礼,三分天下。
在新药研发行业,既有天下无敌的安东处理器(ANTON),也有提供生物数据分析的服务提供商Edico Genome,用FPGA构建的硬件加速平台,创造过基因组测序的最快世界记录。
2018年,被全球基因测序龙头illumina(因美纳),以1亿美元收购。
国内成立于2017年的雪湖科技,同样以使用FPGA加速非结构化数据处理见长,曾获美图投资,现在开发面向生命科学研究的专用计算机,对标ANTON处理器。
更早创立的湖南人和未来生物科技公司,研发的下一代生物信息计算机,采用FPGA计算加速平台,直接对标的是Edico Genome公司的“龙”平台。
2017年,当亚马逊上线EC2 F1加速云服务时,Edico公司采用云优先战略,分析并计算每个完整基因组的平均成本,低至3美元。
FPGA上云,如果说亚马逊具有行业标杆意义,那么微软则是具有里程碑意义。
目前OpenAI,DeepMind和FAIR,全球人工智能实验室TOP3,分别背靠微软、谷歌和脸书。
按照经济学人的统计数据,在AI领域近年来各家公司的论文发表数量,谷歌最多,微软、斯坦福大学、脸书和亚马逊紧随,最近ChatGPT出圈整出大动静的OpenAI,排名最末。
在专利数量上,则是国内的腾讯和百度高居前排,蓝色巨人IBM公司排在第三。
AI大战,基建先行。
技术世界已经迈向一个新轨道,亚马逊、谷歌、微软等少数几家互联网巨头,运作几大超级数据中心。
2012年,人工智能专家吴恩达教授,仅用三台英伟达GPU加速卡,就完成了谷歌X实验室,用1000台CPU服务器才能完成的“猫脸识别”任务。
从此在AI训练方面,英伟达的GPU已经远远走在了前面,在登顶之路上一骑绝尘。
而在AI模型的推理方面,除了像谷歌那样自研TPU芯片,微软则是选择一条更循序渐进的FPGA路线。
数据中心对算力的极致处理需求,很多负载都需要使用定制硬件。
在2021年的DAC会议上,谷歌应EDA巨头楷登电子邀请,参与“系统公司如何重塑EDA的要求”讨论时表示,表示其全球数据中心运行的工作流类别,数量多达1000多个。
其中的很多都需要使用硬件进行加速。
对FPGA一直素有积累的微软,自然成为其首选加速芯片。
就在FPGA从仿真加速发端,正在向算力加速发力的2011年,微软在内部启动了加速必应(bing)搜索的Catapult项目。
对于用FPGA实现的硬件加速,在各个细分行业已经先行一步创新者,即便没有标准答案,也至少是足够的参考样本。
在计算,存储,网络和通信的各个路径上,都可以用FPGA进行近数据源加速。
到了2014年,微软正式发布消息,已部署1632片阿尔特拉公司的FPGA,大幅加速bing搜索。
实现70%以上的效能提升。
第二阶段,将FPGA进一步扩展到数据中心的网络和存储应用;
第三阶段,进行全面部署。
使用英特尔(PSG)的数百万片FPGA,构建整个数据中心的加速平台。
2016年,成为AI加速的行业变革转折年。
微软宣布超级数据中心“AI黎明”到来,谷歌发布了自己的初代TPU芯片,并通过AlphaGo人机围棋大战,挑战“智力游戏中的皇冠"。
也顺势点燃了全球在AI赛道上极速演进,风起云涌的创新浪潮。
2018年,微软用25万片FPGA加速机器学习模型,构建世界上最大的AI超级计算机脑波(BrainWave)。
为了让FPGA的云迁移简单易行,赛灵思除了积极支持中小公司的硬件平台应用创新之外,也对其硬件板卡和开发工具进行磨合。
比如由Altera公司工程师创办的宁比网(Nimbix),同时采用FPGA和GPU两种异构计算的的云服务提供商,为赛灵思的硬件加速服务提供了试验床。
2021年,宁比网被欧洲高性能计算和云服务提供商Atos收购,目前仅保留GPU、CPU业务,原有的FPGA加速业务,转由另一家名为VMAccel的初创公司提供。
磨合基本完成后,赛灵思提供的标准硬件板卡,仅配置存储和通信两大核心接口,市场增速迅猛。
把智能计算扩展到边缘,而不仅仅是数据中心的进展上,国内腾讯阿里等云服务商,与国外微软等公司同步,赛灵思和亚马逊的合作,走在前面。
算力无处不在,目前FPGA硬件加速卡进入到市场充分供给阶段。
2020年,EDA公司提供原型验证服务的传统仿真加速器,全球市场规模为2.16亿美元。
2021年时,赛灵思硬件加速器的营收,从原先开发板常年的千万美元左右,就已经剧增至1亿美元量级。
EDA公司提供的UV9P型传统定制硬件板卡,市场报价75000元;在亚马逊AWS EC2 F1上定制同等规模的硬件加速平台,不到200元。
微软两次大规模采用FPGA,是助推英特尔收购阿尔特拉公司,以及重生之后的AMD,收购赛灵思的时点前后。
2021年元月,微软开始大规模部署由赛灵思原厂提供的Alveo U250标准加速卡,为全球54个区域的用户提供硬件加速服务。
即便是像微软这样的科技巨擘,要人有人,要钱有钱,但对于FPGA的开发应用,也是“痛并快乐着”。
痛点是调试验证,亮点是硬件加速。
应用编程难度大、开发周期长、从业人员少,管你是巨头还是个体户小白,照样三板斧砍下去,不疼也别扭。
毕竟,与全球3000万软件工程师相比,硬件工程师群体仅为数十万量级。
直到现在,FPGA应用开发,大多还是直接用硬件寄存器传输级RTL语言构建。
虽然已经比门级网表的抽象层次要高,但RTL级别描述数据在寄存器之间的流动,以及寄存器之间的逻辑处理,仍属于用户需要了解“硬件底层”运作的范畴。
按照网友的说法"软件好歹还可以自学成才,硬件属于完全不能自学的那种"。
“入行门槛高”、“比较吃经验”是基操。
比如上板调试验证,一边是产品交付压力倍增,一边要抽丝剥茧细致入微,就是“动手+脑力波形”混用才能解决问题的实际应用。
是技术活,也是堆人手吃经验的体力活,从现在AI代替的进展看,围棋、艺术等“纯”脑力人类优势项目已经被陆续“攻破”,最难取代的反而是物理层面的“蓝领体力劳动”。
简单换算,约等于FPGA工程师将是守护人类尊严的最后看门人之一。
即便是像微软这样的科技巨擘,仍然把FPGA芯片实现的硬件加速,视为困难、耗时、专业并且有些奇怪的任务。
将其类比为“就像要用可口可乐做鱼翅汤”。
03
欢迎来到硅基智能的二进制数据世界
从计算机体系结构视角,驱动芯片运行的0/1二进制数据,是从碳基智能的工程师,能够理解易于调试验证的“数字逻辑世界”,进入到黑盒状态“芯片物理世界”的分界线。
也是解决软硬件复杂耦合关系的唯一切入点。
二进制数据作为硅基芯片的专用语言,既可服务查Bug,也可用来找木马。
但现在就像是“婴语”,只能是经验丰富的育婴师才能"解读交流"。
因为芯片物理层复杂,长期只能由少数专家级、昂贵复杂系统进行分析。
比如当今的软件安全技术,会利用特殊工具来检查源代码,并标记潜在的安全漏洞。随着软件产品中包含更多来自开源项目和其它第三方组件,这个问题变得越来越复杂。
被麻省理工技术评论称为“2017年最聪明五十家公司”之一的ForAllSecure公司,目标是建立一个完全自动化的网络安全推理系统。
研发的检测工具,曾获美国国防部高级研究计划局(DARPA)网络安全超级挑战赛冠军。
其主要特点是,分析软件编译后的二进制数据,而非人工编程的源代码。
这意味着,其可以在没有开发人员帮助的情况下分析程序,这对于包含第三方组件的程序来说,非常重要,因为它们可能没有源代码。
除了为公司赢得200万美元的最高奖金外,这台参赛服务器现已被半官方的史密森尼博物馆收藏。
2023年,国产CPU企业龙芯中科,与AI芯片曾经的明星初创Wave Computing公司,产生了不经意的交集。
曾经在AI赛道高举高打,现在沦落到申请破产保护的Wave公司,转向开发RISC-V架构的处理器。
但早在2017年,已从Imagination公司买下MIPS架构的全部核心技术。
2018年成立的上海芯联芯智能(CIP United),又从Wave手中拿到了部分区域的永久商业授权,覆盖澳门、香港和内地。
芯联芯状告龙芯中科MIPS指令集侵权。
而龙芯最终得以胜诉的主要原因,是其最新LoongArch指令集,可兼容MIPS、X86和ARM软件程序。
采用的是二进制翻译(Translation)方式。
这就像是内功深厚的高手,打通任督二脉后的乾坤大挪移,移形换影的至高武功之一。
比如苹果公司,就是当仁不让的集大成者,在Mac上已成功运用多次。包括在2020年,将Mac的X86 CPU,换成自研的ARM架构处理器。
苹果公司采用的二进制翻译软件Rosetta,源于跨平台的虚拟化解决方案提供商,成立于2000年的Transitive公司。
首个客户是曾在1992年收购MIPS公司的SGI,大客户包括苹果和IBM等。
2008年底,被IBM以传言中的2.5亿美元收购时,已经销售1500万份软件。
收购逻辑是,能够将Sun、英特尔等竞争对手服务器上的应用程序,移植到自己的大型机、Power系列服务器。
软件程序,都是从源代码被编译为二进制机器码,再由CPU芯片执行。从二进制数据入手,通过转译,可实现核心处理平台“搬迁”。
不仅限于成熟大企业的应用,初创企业也是跃跃欲试。
比如Tachyum拟推出面向数据中心市场的高性能处理器,可跨平台支持x86、ARM和RSIC-V二进制文件。
由芯片二进制数据承载的信息要素,除了对应用进行迁移,具有化繁为简的高效率,在很大程度上,也是调试验证、安全保障、以及系统运维的基础。
具有硬件可编程能力的FPGA芯片,当然也不例外。
以0/1二进制数据序列呈现的位流(bitstream),是用户应用开发的最后设计成果。
包含了用户设计成果的全部信息要素,有些类似于生物体的DNA。
而与这些二进制数据直接交互的电子设计自动化(EDA)软件,就像是信使mRNA。
原本不为人熟知的mRNA,在其演进过程中,也曾一度被行业普遍认为是:
但在此技术积累基础上研发的疫苗,成为结束全球新冠大流行的奇兵之一。
既是有心栽花花盛开,也是用心插柳柳成荫。
Moderna和BioNTech,从具有技术特色的几十亿量级企业,市值一度高达千亿。
极速发展的数字经济时代,如果说硬件加速一切,软件定义一切,那么网络则是连接一切。
以往网络安全,通常以芯片是安全的为前提。
随着全球半导体设计,以及制造供应链的分散化,特别是大量第三方IP核的使用,这个假设已经不再成立。
对芯片的需求,从追求极致性能的快,也转向安全和信任并重。
特别是全球化进入到不信任时代,确保芯片应用安全,进而保障信息系统安全,重要性更为突显。
比如科创板上市公司澜起科技,近年面向政企市场主推的津逮服务器,采用可重构模块(RCP),对X86 CPU的二进制数据进行实时动态监测,并提供安全防护。
2019年,中科曙光拟定增募资投入国产计算机研发的47.8亿元,其中4.8亿用于高端计算机内置主动管控固件研发项目。
与澜起科技RCP同样的心思。
对芯片二进制数据的安全应用,在FPGA芯片传统的优势应用领域,更是常态。
比如北京微电子研究所研制的第五代宇航用千万门级FPGA,就特别提供配套的专用刷新芯片(BSV5)。
在空间恶劣环境下,采用固定刷新方式,避免发生01翻转导致的系统随机故障。
用以确保FPGA芯片在运行时,决定其硬件电路功能和结构的二进制数据不会发生改变,即位流(Bitstream)完整性不受破坏。
打个不太合适的类比,相当于在高风险环境下,按时定期打疫苗,有备无患。
而在更广泛使用的工业控制领域,类似IT设备中芯片的硬件安全应用,直接对其位流数据的特别保护,在各个行业已渐成趋势。
比如德国Novtech公司,一款仅售439美元,用于工业通讯协议处理的板卡,安全防护措施包括防止故障注入(fault injection)等。
在EDA行业,按照明导公司在2016年的观点,如果Verilog代码量超过两万行,对存在bug和受污染的IP,除非被主动激活,否则很难测试验证。
现有工具很难掌控这种级别的复杂性。
比如在边界中的隐匿后门,也可能无法通过完全充分的测试进行查找。
然而,即便是隐藏最深的安全漏洞,最终也会以二进制形式驻留,在芯片位流级别(bitstream)留下痕迹。
换而言之,位流分析服务,除了现有用于加快查找设计缺陷(bug),加速IC设计左移之外,可能也为查找芯片硬件木马之类的高级安全和信任验证,提供更为高效的解决思路。
2021年,西门子收购的德国OneSpin公司,其等价性验证工具,据说能够为IC设计提供包括查找硬件木马在内的高级信任验证服务。
以推动多项颠覆性技术创新被世界熟知的美国国防部高级研究计划署(DARPA),将战略目标设定为追求“高风险、高回报、目标远大”的基础研究,堪称现在追逐“硬科技”VC投资机构的殿堂级祖师。
在2007年率先发起“可信集成电路“计划,即Trust in IC。
2018年,美国国防部新颁布“无损害”安全交付政策,对关键任务武器、装备和通信系统的采购要求,在传统的价格、交付和性能的“金三角”上,特别新增加了安全验证环节。
对芯片进行信任验证。
FPGA位流分析工具一直全程参与,也是美国“可信微电子计划”的组成部分。直到进入成熟应用阶段。
MacB公司在庆祝成立35周年时,将其拥有的FPGA位流安全解决方案,拔高到“美国未来十年、甚至更长时间都迫切需要的独特产品和创新解决方案”。其位流分析服务包括:
& 空间单粒子效应的仿真验证(Space Application)
& 可信微电子领域的"信任验证"(Trust)
& FPGA应用设计验证(Verification)
& 军工装备的"遗留系统"迁移(Design Migration)
所谓大巧不工,藏巧于拙,因为,终极的复杂,是简单。
今天的FPGA芯片,已深入应用到国民经济的各个角落。
位流数据分析服务,除了那些高端局应用外,还可以非常接地气的常规服务。
比如用于辅助电子数据鉴定,满足司法数据鉴定中“3A”原则:
在不对原有的证物进行任何损坏或改动的前提之下获取证据(Acquire);
证明所获取的证据和原有的数据是相同的(Authenticate);
在不改动数据的前提之下对其进行分析(Analyze)。
这可能也是FPGA设计固件盗版的高效应对方式之一,能提供无可辩驳的数据证明。
软件定义EDA辅助验证的位流工具,可快速扩张的市场机会,远不只是IC设计阶段,提供最为高效的调试验证服务。
芯片是信息系统的基石,从制造阶段服务安全的芯片,到使用阶段保障芯片的安全,贯穿了芯片的整个生命周期。
2020年7月,西门子收购英国UltraSoC公司,被业内认为是“融合两种非重叠技术”的最佳并购案例之一。
其面向ARM、RSIC-V研发的监控IP,接上西门子已有的Tessent工具套件,也就具备了对芯片的全寿命周期管理能力。
创造了新的EDA服务品类。
覆盖芯片从设计(Dev)、运维(DevOps),以及安全(DevSecOps)三个层面的立体服务。
2009年成立的UltraSoC公司,初期产品是嵌入式SoC内部的监控IP,早期的目标市场是IC设计调试,虽然在2013年获得过三轮的风险投资,但商业化并不成功。
无心生大用,刻意反难成。
当公司意识到同样的产品,还可应用于包括网络安全,系统优化和预测分析等更广泛的领域时,开始转变市场策略。
重要的不是当前的位置,而是方向和速度,以及加速度。
2015年重启业务后,再次连续获得风险投资青睐,此后数轮又融资1660万美元。
随着RSIC-V在全球的兴起,更成为推动公司快速发展的额外助力,也是促成西门子并购的主要原因。
与芯片物理层相关的软件,具有对芯片更全面的掌控力,企业价值如今还只是冰山一角。
这可能也是全球第五家,半导体第三家实现万亿市值的博通公司,亲睐VMware,不惜花610亿美元巨资将其并购的投资逻辑之一。
此为行业回顾系列文章的第三篇。
全文完,感谢您的耐心阅读。
∷参考资料∷
[1] 第五代:人工智能与日本计算机对世界的挑战,爱德华.A.费吉鲍姆等著, 汪致远,童振华,江绵恒,江敏译
[2] Microsoft Bets Itis Future on a Programmable Computer Chip, Cade Metz, WIRED
[3] FPGA Functional Verification Trend Report, Harry Foster, Siemens EDA
[4] The Tangled History of mRNA Vaccines, Elie Dolgin, Nature
[5] 硅谷创投七十年,王求乐,名川资本
[6] 科技业史上第三大并购,博通拟收购VMware,澎湃新闻,2022