金圣叹批评版水浒传上 - 笔记

本文探讨了如何深入阅读古典名著《水浒传》,通过分析金圣叹批评版的点评,帮助读者理解《水浒传》的艺术魅力所在。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  20170126 - 20170129

  作为精彩纷呈的小说来阅读水浒传,来欣赏水浒传的故事情节,这是大部分人的阅读方式。因此第一遍阅读水浒传都是阅读故事情节来。

  如果仅仅阅读故事来看水浒传,那么有所缺憾,为什么水浒传写的好呢,哪里写的好呢?不知道读者是否可以分析出来!那么就阅读金圣叹批评版七十回的水浒传。金圣叹的点评让读者可以知晓水浒传哪里写的好,为什么写的好。

<think>好的,用户之前已经询问过唐诗推荐的网站,现在他们想了解做一个唐诗阅读推荐系统需要什么数据。首先,我需要确定用户的需求是什么。可能他们是一个学生、研究者,或者是对唐诗感兴趣的开发者,想要构建一个推荐系统。用户可能希望这个系统能够根据不同的用户需求推荐合适的唐诗,比如学习、研究或者欣赏。 接下来,我需要考虑推荐系统通常需要哪些数据。一般来说,推荐系统需要用户数据、内容数据和交互数据。不过唐诗作为特定的内容,可能需要更详细的数据分类。根据之前推荐的网站,比如搜韵、古诗文网等,这些网站提供了注释、朗诵、创作背景等信息,所以推荐系统可能需要整合这些多维度的数据。 用户可能没有意识到唐诗推荐系统不仅需要基本的诗作信息,还需要更深入的元数据,比如诗人的生平、时代背景、诗歌的意象、韵律等。此外,用户的交互数据,如点击、收藏、评分等,也是重要的。不过用户可能没有技术背景,所以需要将技术术语简化,用他们能理解的语言解释。 还要考虑到用户可能的深层需求。他们可能希望推荐系统不仅基于内容,还能结合用户的学习进度或兴趣变化。比如,初学者可能需要简单易懂的诗,而研究者可能需要深度的学术分析。因此,数据需要分层,包括基础数据、扩展数据和用户行为数据。 另外,数据来源的问题也很重要。之前推荐的网站可以作为数据源,但需要注意权问题。可能需要使用公开的数据集,或者与学术机构合作获取授权数据。用户可能没有考虑到数据的合法性和获取途径,所以需要提醒他们注意这一点。 最后,总结出需要的数据类型,并给出结构化的回答,帮助用户逐步理解构建推荐系统所需的各个方面。确保回答清晰,分点说明,并给出实际例子,如使用表格展示数据结构,这样用户更容易理解和应用。</think>构建一个唐诗阅读推荐系统需要多维度的数据支撑,以下是关键数据类型及具体应用场景的梳理: --- ### 一、**基础诗作数据** | 数据类型 | 说明与示例 | 应用场景 | |--------------------|------------------------------|-------------------------| | 文本本体 | 完整诗文+标题,如《静夜思》正文 | 推荐内容基础载体 | | 格律标注 | 平仄格式(如"平平仄仄平") | 格律学习型推荐的核心参数 | | 押韵信息 | 所属韵部(如"下平七阳") | 创作辅助推荐 | | 体裁分类 | 律诗/绝句/乐府等标签 | 体裁偏好建模 | --- ### 二、**扩展元数据** | 层级 | 数据维度 | 典型数据项示例 | |------------|--------------------------|----------------------------------| | **诗人** | 生卒年/籍贯/仕途轨迹 | 李白"701-762年,蜀地出生,翰林待诏" | | **时代** | 初唐/盛唐/中唐/晚唐分期 | 《春江花月夜》标注"初唐末期" | | **意象** | 自然意象/情感意象词云 | "明月"出现频次:盛唐>中唐 | | **评注** | 古今名家点评集合 | 金圣叹批注《杜诗解》 | --- ### 三、**用户行为数据** 1. **显性反馈** - 评分数据(1-5星评价体系) - 收藏/分享行为(如用户标记"最爱李商隐") - 批注留存(用户个人笔记的关键词提取) 2. **隐性反馈** $$ \text{兴趣权重} = \frac{\text{停留时长}}{\log(\text{滑动速度})} \times \text{深度阅读系数} $$ - 页面停留时长、滚动速度监测 - 跨作品跳转路径分析(如"杜甫→李白→岑参"的关联链) --- ### 四、**领域知识图谱** ```mermaid graph LR A[杜甫] -->|受其影响| B[李商隐] C[边塞诗] -->|包含| D[《燕歌行》] E[明月意象] -->|情感映射| F[思乡/孤独] G[安史之乱] -->|创作背景| H[《春望》] ``` --- ### 五、**数据获取途径** 1. **公开数据集** - 哈佛燕京图书馆《全唐诗》XML标注库 - 中华经典古籍库API接口 2. **学术合作** - 与高校合作获取《唐代文学编年史》数字化- 接入《唐诗鉴赏辞典》结构化数据 3. **用户共建** - 开放注释众包平台(需设计防灌水机制) - 创作社区UGC内容定向抓取 --- ### 六、**技术处理要点** 1. **非结构化数据处理** - 运用Bi-LSTM+CRF模型从古籍扫描件中提取诗人关系 $$ P(y|x) = \frac{\exp(\sum_{i=1}^n W_{y_i}y_{i-1} + b_{y_i})}{\sum_{y'}\exp(...)} $$ 2. **冷启动解决方案** - 构建"时代-体裁-意象"三维矩阵初始化推荐: $$ \text{推荐指数} = \alpha \cdot \text{时代热度} + \beta \cdot \text{体裁权重} $$ --- **系统架构建议**:采用混合推荐架构,结合: - 基于内容的推荐(意象相似度计算) - 协同过滤(用户群体偏好分析) - 知识图谱推理(历史事件关联推荐) 实际案例:搜韵网的"主题联想"功能即通过「战争→边塞诗→相关历史事件」的图谱路径实现深度推荐。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值