【城会玩】hdu 4920 Matrix multiplication【矩阵相乘优化】

本文介绍了一种矩阵乘法的优化方法,通过调整循环顺序并在适当的位置加入continue语句来减少不必要的计算,尤其是在处理大量0元素的情况下效果显著。提供了一个具体的C++实现案例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Matrix multiplication

Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)
Total Submission(s): 4220    Accepted Submission(s): 1692


Problem Description
Given two matrices A and B of size n×n, find the product of them.

bobo hates big integers. So you are only asked to find the result modulo 3.
 

Input
The input consists of several tests. For each tests:

The first line contains n (1≤n≤800). Each of the following n lines contain n integers -- the description of the matrix A. The j-th integer in the i-th line equals A ij. The next n lines describe the matrix B in similar format (0≤A ij,B ij≤10 9).
 

Output
For each tests:

Print n lines. Each of them contain n integers -- the matrix A×B in similar format.
 

Sample Input
1
0
1
2
0 1
2 3
4 5
6 7
 

Sample Output
0
0 1
2 1
 

Author
Xiaoxu Guo (ftiasch)
 

Source
 

Recommend
We have carefully selected several similar problems for you:   5717  5716  5715  5714  5713 

题目大意:输入一个n,表示两个矩阵的大小,然后接下来两个n*n的矩阵输入,要求输出一个矩阵,表示求得两个矩阵相乘的矩阵。


思路;


1、我们来看直接根据矩阵乘法规则写的代码:


<span style="white-space:pre">	</span>for(int i=0;i<n;i++)
        {
            for(int j=0;j<n;j++)
            {
                for(int k=0;k<n;k++)
                {
                    c[i][j]+=a[i][k]*b[k][j];
                    c[i][j]%=mod;
                }
            }
        }

如果我们想在这里进行一些优化的话,只能变成这样:

        for(int i=0;i<n;i++)
        {
            for(int j=0;j<n;j++)
            {
                for(int k=0;k<n;k++)
                {
                    if(a[i][k]==0||b[k][j]==0)continue;
                    c[i][j]+=a[i][k]*b[k][j];
                    c[i][j]%=mod;
                }
            }
        }

显然优化与否没差。

那么思考:如果我们能在第一层或者第二层for那里加一个continue,那么显然能够优化一层n的复杂度。其实我们的矩阵乘法还可以写成这样:


        for(int i=0;i<n;i++)
        {
            for(int k=0;k<n;k++)
            {
                for(int j=0;j<n;j++)
                {
                    c[i][j]=c[i][j]+a[i][k]*b[k][j];
                    c[i][j]%=3;
                }
            }
        }

其实就是一行一行的往上加,那么这个时候我们在第二层for那里能够加这样一个优化:

        for(int i=0;i<n;i++)
        {
            for(int k=0;k<n;k++)
            {
                if(a[i][k]==0)continue;
                for(int j=0;j<n;j++)
                {
                    c[i][j]=c[i][j]+a[i][k]*b[k][j];
                    c[i][j]%=3;
                }
            }
        }

如果0存在比较多的话,优化也就比较多。


那么根据这种求矩阵乘法的方法来做这个题,相对就能够优化很多操作了:


#include<stdio.h>
#include<string.h>
using namespace std;
#define mod 3
int a[802][820];
int b[802][820];
int c[802][820];
int main()
{
    int n;
    while(~scanf("%d",&n))
    {
        for(int i=0;i<n;i++)
        {
            for(int j=0;j<n;j++)
            {
                scanf("%d",&a[i][j]);
                a[i][j]%=3;
            }
        }
        for(int i=0;i<n;i++)
        {
            for(int j=0;j<n;j++)
            {
                scanf("%d",&b[i][j]);
                b[i][j]%=3;
                c[i][j]=0;
            }
        }
        for(int i=0;i<n;i++)
        {
            for(int k=0;k<n;k++)
            {
                if(a[i][k]==0)continue;
                for(int j=0;j<n;j++)
                {
                    c[i][j]=c[i][j]+a[i][k]*b[k][j];
                    c[i][j]%=3;
                }
            }
        }
        for(int i=0;i<n;i++)
        {
            for(int j=0;j<n-1;j++)
            {
                printf("%d ",c[i][j]);
            }
            printf("%d\n",c[i][n-1]);
        }
    }
}




### HDU 2544 题目分析 HDU 2544 是关于最短路径的经典问题,可以通过多种方法解决,其中包括基于邻接矩阵的 Floyd-Warshall 算法。以下是针对该问题的具体解答。 --- #### 基于邻接矩阵的 Floyd-Warshall 实现 Floyd-Warshall 算法是一种动态规划算法,适用于计算任意两点之间的最短路径。它的时间复杂度为 \( O(V^3) \),其中 \( V \) 表示节点的数量。对于本题中的数据规模 (\( N \leq 100 \)),此算法完全适用。 下面是具体的实现方式: ```cpp #include <iostream> #include <algorithm> using namespace std; const int INF = 0x3f3f3f3f; int dist[105][105]; int n, m; void floyd() { for (int k = 1; k <= n; ++k) { // 中间节点 for (int i = 1; i <= n; ++i) { // 起始节点 for (int j = 1; j <= n; ++j) { // 结束节点 if (dist[i][k] != INF && dist[k][j] != INF) { dist[i][j] = min(dist[i][j], dist[i][k] + dist[k][j]); } } } } } int main() { while (cin >> n >> m && (n || m)) { // 初始化邻接矩阵 for (int i = 1; i <= n; ++i) { for (int j = 1; j <= n; ++j) { if (i == j) dist[i][j] = 0; else dist[i][j] = INF; } } // 输入边的信息并更新邻接矩阵 for (int i = 0; i < m; ++i) { int u, v, w; cin >> u >> v >> w; dist[u][v] = min(dist[u][v], w); dist[v][u] = min(dist[v][u], w); // 如果是有向图,则去掉这一行 } // 执行 Floyd-Warshall 算法 floyd(); // 输出起点到终点的最短距离 cout << (dist[1][n] >= INF ? -1 : dist[1][n]) << endl; } return 0; } ``` --- #### 关键点解析 1. **邻接矩阵初始化** 使用二维数组 `dist` 存储每一对节点间的最小距离。初始状态下,设所有节点对的距离为无穷大 (`INF`),而同一节点自身的距离为零[^4]。 2. **输入处理** 对于每条边 `(u, v)` 和权重 `w`,将其存储至邻接矩阵中,并取较小值以防止重边的影响[^4]。 3. **核心逻辑** Floyd-Warshall 的核心在于三重循环:依次尝试通过中间节点优化其他两节点间的距离关系。具体而言,若从节点 \( i \) 到 \( j \) 可经由 \( k \) 达成更优解,则更新对应位置的值[^4]。 4. **边界条件** 若最终得到的结果仍为无穷大(即无法连通),则返回 `-1`;否则输出实际距离[^4]。 --- #### 性能评估 由于题目限定 \( N \leq 100 \),因此 \( O(N^3) \) 的时间复杂度完全可以接受。此外,空间需求也较低,适合此类场景下的应用。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值