基于静态特征和公开 APT 报告的恶意软件分类
在网络安全领域,高级持续威胁(APT)分析是一个重要的研究课题。许多研究致力于避免和检测此类攻击,但本文的工作重点是开发一种分类方法,以支持专家分析师的工作,通过对有趣的威胁进行优先级排序。
相关工作
在网络安全领域,对高级持续威胁(APT)的分析是一个重要的研究课题。许多研究人员专注于避免和检测此类攻击:
- 基于网络流量特征检测 :一些研究通过使用异常检测系统,利用网络流量特征来检测高级入侵者的存在。
- 动态分析框架 :有研究提出利用动态分析来寻找 APT 存在的证据。
- 组织防御强化 :部分研究致力于通过分析先前的攻击,实施各种预防措施来提高组织的安全级别。
然而,本文的工作并非开发监测器来检测可疑活动或提高组织防御的鲁棒性,而是旨在开发一种分类方法,通过对有趣的威胁进行优先级排序,支持专家分析师的工作。
在恶意软件分类方面,已有一些相关工作:
- Bitshred :使用特征哈希的快速大规模恶意软件分类框架,主要思想是减小特征向量的大小,以加速机器学习分析。
- VILO :基于最近邻算法和加权操作码助记符排列特征的恶意软件分类工具,旨在快速学习恶意软件家族。
- SigMal :使用信号处理来测量恶意软件之间的相似性,从而定义更抗噪声的签名,以快速分类恶意软件。
与这些工作不同,本文的方法优先处理