医学图像异常检测与脑沟曲线形状分析新方法
在医学图像分析领域,快速准确地检测形态异常以及对脑沟曲线形状进行有效分析是重要的研究方向。本文将介绍两种相关的创新方法,一种用于医学图像中玻璃膜疣(drusen)的检测,另一种用于脑沟曲线形状的表示与分析。
医学图像中玻璃膜疣检测方法
分割评估
提示系统的准确性在很大程度上依赖于分割的准确性,因此进行了全面的评估。分割算法需要能够对健康数据集和包含玻璃膜疣的数据集进行分割。具体操作如下:
1. 数据集选择 :使用了20个OCT体积,每个体积随机选择5个B扫描,由两位专家手动分割。
2. 对比分析 :将两位观察者的平均手动分割结果与自动分割算法的结果进行比较。评估重点放在与玻璃膜疣分割相关的两层:下基底膜(BM)和上内节/外节(IS/OS)边界。
- 上IS/OS边界分割的平均无符号误差为1.69 ± 1.61μm。
- 下BM边界分割的平均无符号误差为2.75 ± 2.49μm。
3. 玻璃膜疣数据集评估 :使用20个包含玻璃膜疣的数据集,手动分割每个高度达141μm的玻璃膜疣的下BM和上IS/OS边界,不分割视网膜色素上皮(RPE)的健康部分。
- 上IS/OS边界在所有玻璃膜疣上的平均无符号误差为5.66 ± 10.00μm。
- 下BM边界在所有玻璃膜疣上的平均无符号误差为4.67 ± 7.42μm。
虽然玻璃膜疣的分割误差大于健康组织,但考虑到轴向像素分辨率为3.9μm,该误差仍然相对较小。