基于上下文约束多实例学习的组织病理学图像分割技术解析
在医学领域,组织病理学图像分割对于癌症诊断和治疗至关重要。传统的监督式图像分割方法需要大量高质量的手动像素标注,这不仅耗时费力,而且即使是训练有素的专家也可能存在内在的模糊性。为了解决这些问题,研究人员提出了上下文约束多实例学习(ccMIL)算法,它在减少弱监督模糊性方面表现出色,并能实现组织病理学癌症图像的分割、聚类和分类。
1. 背景介绍
组织病理学图像分析在癌症诊断中具有重要意义,其临床任务主要包括:
- 诊断癌症的存在(图像分类)
- 将图像分割为癌细胞和非癌细胞(图像分割)
- 将组织细胞聚成不同的子类(聚类)
然而,标准的无监督图像分割方法由于组织病理学癌症图像的复杂模式而效果不佳。现有的监督方法则需要详细的手动注释,这是一项艰巨的任务。近年来,弱监督学习(WSL),特别是多实例学习(MIL),利用粗粒度标签来自动探索细粒度信息,在医学图像分类中取得了鼓舞人心的结果,但尚未针对图像分割以及集成的分割、聚类和分类框架进行研究。
2. ccMIL算法原理
ccMIL旨在考虑上下文信息,以提高性能并实现鲁棒性。它继承了多聚类实例学习(MCIL)的一些方面,但在MIL训练阶段研究上下文先验,以减少弱监督带来的内在模糊性。
2.1 上下文约束多实例学习(ccMIL)
在ccMIL中,学习示例由实例袋表示。一个组织病理学图像是一个袋,从图像中采样的每个补丁是一个实例。包含癌症组织的补丁被视为正实例,否则为负实例。如果一个袋包含至少一个正实例,则该袋被标记为正(癌症图像)。
给定训练集X,第i