BTrace系列之四:破解案例

BTrace系列之四:破解案例

破解案例

破解思路:使用BTrace可以轻松的对Java软件达到破解的目的。

1.捕捉某些征兆:大家都知道共享软件在未授权的情况下使用,软件开发者未了使得更多的客户购买使用,会强制使用一些手段包括对软件功能进行限制,对软件使用失效进行限制,对软件进行不友好的标注,那么这些就是我们要捕捉的征兆,可是凡是有利就有弊,软件开发者对用种种限制或提示,以此来提醒或者逼迫使用者进行购买使用,确实在某种程度上可以增加软件的销售量,但是也正是因为这些征兆使用软件破解成为一种可能。这些征兆也成为一些不法分子的破解共享软件的入口。

2.使用BTrace进行跟踪:捕捉好征兆后就可以使用BTrace利器对于这些征兆进行捕捉了,主要是通过BTrace将这些征兆的判断逻辑捕获到。
3.
修改判断逻辑进行破解:相对来说这一步骤较为简单了,通过步骤2找到了判断逻辑位置,通过对相应的位置进行反编译,然后进行修改即可。或者是使用ASM进行字节码修改。

使用反编译的情况是,字节码没有进过严重混淆,有些共享软件开发者会使用一些工具对字节码进行混淆,不同的工具混淆程度也不一样,同样字典也不一样,但是可以确定的一件事就是反编译的难度加大了,同样导致修改判断逻辑难度加大。

实际案例

下面就根据上述的思路进行某共享软件的破解。

某软件在未购买软件的情况下使用,会有2小时后自动退出的问题,导致严重影响了客户体验。而且或有不友好的提示。对于我们来说2小时的自动退出就是一个不错的征兆,那么退出自然是通过System.exit(0)来实现的,并且在退出前还有一些提示,那么这样就可以在跟踪到多处System.exit(0)之后,在根据提示信息来进行区分,到底哪些才是我们真正想要的征兆。

使用BTrace脚本:

/* BTrace Script Template */
import com.sun.btrace.annotations.*;
import static com.sun.btrace.BTraceUtils.*;

@BTrace
public class TracingScript {
	/* put your code here */
    @OnMethod(clazz="+java.lang.Object", method="/.*/", location=@Location(value=Kind.CALL, clazz="java.lang.System", method="exit"))
    public static void trace(@ProbeClassName String className, @ProbeMethodName String methodName)
    {
        println("*****************************************");
        print(className);
        println(Strings.strcat(".", methodName));
}

 输出:

XXX.XXX.A.G.B

反编译该class

static void B(String paramString)
    {
        if (N)
            return;
        N = true;
        SwingUtilities.invokeLater(new Runnable(paramString)
        {
            public void run()
            {
                JOptionPane.showMessageDialog(null, C.this
                        + ", System will exit.");
                System.exit(0);
            }
        });
    }

 

发现是这个方法调用的System.exit(0),接下来就很简单了,只要将该class修改后替换原来的class文件即可。

6/2025 MP4 出版 |视频: h264, 1280x720 |音频:AAC,44.1 KHz,2 Ch 语言:英语 |持续时间:12h 3m |大小: 4.5 GB 通过实际 NLP 项目学习文本预处理、矢量化、神经网络、CNN、RNN 和深度学习 学习内容 学习核心 NLP 任务,如词汇切分、词干提取、词形还原、POS 标记和实体识别,以实现有效的文本预处理。 使用 One-Hot、TF-IDF、BOW、N-grams 和 Word2Vec 将文本转换为向量,用于 ML 和 DL 模型。 了解并实施神经网络,包括感知器、ANN 和数学反向传播。 掌握深度学习概念,如激活函数、损失函数和优化技术,如 SGD 和 Adam 使用 CNN 和 RNN 构建 NLP 和计算机视觉模型,以及真实数据集和端到端工作流程 岗位要求 基本的 Python 编程知识——包括变量、函数和循环,以及 NLP 和 DL 实现 熟悉高中数学——尤其是线性代数、概率和函数,用于理解神经网络和反向传播。 对 AI、ML 或数据科学感兴趣 – 不需要 NLP 或深度学习方面的经验;概念是从头开始教授的 描述 本课程专为渴望深入了解自然语言处理 (NLP) 和深度学习的激动人心的世界的人而设计,这是人工智能行业中增长最快和需求最旺盛的两个领域。无论您是学生、希望提升技能的在职专业人士,还是有抱负的数据科学家,本课程都能为您提供必要的工具和知识,以了解机器如何阅读、解释和学习人类语言。我们从 NLP 的基础开始,从头开始使用文本预处理技术,例如分词化、词干提取、词形还原、停用词删除、POS 标记和命名实体识别。这些技术对于准备非结构化文本数据至关重要,并用于聊天机器人、翻译器和推荐引擎等实际 AI 应用程序。接下来,您将学习如何使用 Bag of Words、TF-IDF、One-Hot E
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值