基于大模型的过敏性紫癜预测与手术决策技术方案


一、算法实现伪代码

1. 数据预处理伪代码(Python风格)

# 数据清洗与标准化
def preprocess_data(raw_data):
    # 缺失值处理(均值插补)
    cleaned_data = fill_missing_values(raw_data, method="mean")
    # 分类变量编码(One-Hot Encoding)
    encoded_data = encode_categorical(cleaned_data)
    # 数值归一化(Z-Score标准化)
    normalized_data = z_score_normalization(encoded_data)
    return normalized_data

# 数据分割(训练集/验证集/测试集)
def split_data(data, ratio=(0.7, 0.2, 0.1)):
    train_data, val_data, test_data = stratified_split(data, ratio)
    return train_data, val_data, test_data

2. 大模型训练伪代码(PyTorch框架)

# 模型定义(基于Transformer)
class PurpuraPredictionModel(nn.Module):
    def __init__(self, input_dim, output_dim):
        super().__init__()
        self.encoder = TransformerEncoder(input_dim, num_layers=6)
        self.classifier = nn.Linear(input_dim, output_dim)
    
    def forward(self, x):
        x = self.encoder(x)  # 特征提取
        x = self.classifier(x)  # 输出预测结果
        return x

# 模型训练与早停
def train_model(train_data, val_data):
    model = PurpuraPredictionModel(input_dim=128, output_dim=3)  # 示例参数
    criterion = nn.CrossEntropyLoss()
    optimizer = Adam(model.parameters(), lr=1e-4)
    
    for epoch in range(MAX_EPOCHS):
        for batch in train_loader:
            optimizer.zero_grad()
            outputs = model(batch["features"])
            loss = criterion(outputs, batch["labels"])
            loss.backward()
            optimizer.step()
        
        # 验证集评估
        val_loss = evaluate_model(model, val_data)
        if early_stopping_condition(val_loss):
            break
    return model

二、模块详细流程图(Mermaid格式)

1. 术前预测系统流程图

graph TD
    A[输入患者数据] --> B{数据预处理}
    B --> C[特征工程(实验室指标+症状编码)]
    C --> D[大模型推理(疾病严重程度预测)]
    D --> E[输出预测结果]
    E --> F[生成手术规划建议]
    F --> G[麻醉风险评估]

2. 术中监测系统流程图

正常
异常
实时采集生命体征
数据标准化处理
大模型实时推理
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

LCG元

你的鼓励将是我创作的最大动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值