一、算法实现伪代码
1. 数据预处理伪代码(Python风格)
def preprocess_data(raw_data):
cleaned_data = fill_missing_values(raw_data, method="mean")
encoded_data = encode_categorical(cleaned_data)
normalized_data = z_score_normalization(encoded_data)
return normalized_data
def split_data(data, ratio=(0.7, 0.2, 0.1)):
train_data, val_data, test_data = stratified_split(data, ratio)
return train_data, val_data, test_data
2. 大模型训练伪代码(PyTorch框架)
class PurpuraPredictionModel(nn.Module):
def __init__(self, input_dim, output_dim):
super().__init__()
self.encoder = TransformerEncoder(input_dim, num_layers=6)
self.classifier = nn.Linear(input_dim, output_dim)
def forward(self, x):
x = self.encoder(x)
x = self.classifier(x)
return x
def train_model(train_data, val_data):
model = PurpuraPredictionModel(input_dim=128, output_dim=3)
criterion = nn.CrossEntropyLoss()
optimizer = Adam(model.parameters(), lr=1e-4)
for epoch in range(MAX_EPOCHS):
for batch in train_loader:
optimizer.zero_grad()
outputs = model(batch["features"])
loss = criterion(outputs, batch["labels"])
loss.backward()
optimizer.step()
val_loss = evaluate_model(model, val_data)
if early_stopping_condition(val_loss):
break
return model
二、模块详细流程图(Mermaid格式)
1. 术前预测系统流程图
graph TD
A[输入患者数据] --> B{数据预处理}
B --> C[特征工程(实验室指标+症状编码)]
C --> D[大模型推理(疾病严重程度预测)]
D --> E[输出预测结果]
E --> F[生成手术规划建议]
F --> G[麻醉风险评估]
2. 术中监测系统流程图