Ollama为本地运行提供了简单的工具
网站 https://ollama.com
安装 Ollama
下载页: https://ollama.com/download
通过命令行安装
curl -fsSL https://ollama.com/install.sh | sh
运行Deepseek R1
https://ollama.com/library/deepseek-r1
选择需要运行的模型大小, 直接运行其命令行即可, 对于硬件资源有限的笔记本电脑, 可以运行1.5b模型
ollama run deepseek-r1:1.5b
需要下载1GB大小的数据, 基于CPU运行的速度还可以.
实际测试
对比了一下1.5b和8b两个模型, 都是在CPU下跑的
- 1.5b因为数据尺寸小很多知识被精简了, 我问 switch 下的 hollow knight 游戏, 8b可以回答, 1.5b不行, 但是在一些更细节的问题上, 例如小米路由器R6069的硬件参数, 8b就开始胡编了.
- 运行时对内存要求不高, 运行 8b 模型时, 系统内存占用没有超过10G
- 运行对CPU要求较高, 运行 8b模型时 24核的E5 2673v3基本上跑满, 比在笔记本电脑上运行1.5b速度还更快, 瓶颈在CPU上. 使用CPU运行速度还是比较慢的, 需要思考很久才有响应.