Mip-Splatting: Alias-free 3D Gaussian Splatting

Mip Splatting

关联项目

相关解读

Deepseek

根据论文内容,《Mip-Splatting: Alias-free 3D Gaussian Splatting》 针对 《3D Gaussian Splatting for Real-Time Radiance Field Rendering》 的核心改进点可总结为以下四个方面,重点解决了原方法在多尺度渲染抗锯齿方面的缺陷:


1. 核心问题:原方法的局限性

原3D Gaussian Splatting(3DGS)在以下场景会出现明显伪影:

  • 缩放视角(Zoom In/Out)
    • 放大(Zoom In):高斯椭球投影到屏幕时过度膨胀,导致高频细节丢失(“侵蚀伪影”)。
    • 缩小(Zoom Out):高斯椭球投影过小,2D膨胀滤波(Dilation)不足,产生锯齿(“膨胀伪影”)。
  • 训练-测试尺度不一致:训练时固定分辨率,测试时改变焦距或分辨率会导致失真。

根本原因

  1. 缺乏3D频率约束:高斯椭球的尺寸未受输入视图采样率的限制,允许不合理的频率成分存在。
  2. 2D膨胀滤波的局限性:固定的2D Dilation无法自适应多尺度渲染需求。

2. 改进点1:3D平滑滤波(3D Smoothing Filter)

原理
  • Nyquist-Shannon采样定理:输入视图的采样率决定了场景可表示的最高3D频率(Nyquist极限)。
  • 3D频率约束:在优化过程中,对每个3D高斯施加低通滤波,限制其尺寸不超过由输入视图推导的最大频率对应的最小尺寸。
    • 数学上,通过分析多视角的采样率,计算每个高斯允许的最大频率,并调整其协方差矩阵。
效果
  • 消除放大伪影:强制高斯椭球在3D空间中保持合理的尺寸分布,避免投影到屏幕时过度膨胀(如图2中8×放大时的改进)。
  • 成为场景固有属性:滤波后的高斯参数在训练后固定,与视角无关。

3. 改进点2:2D Mip滤波(替代2D Dilation)

原理
  • 问题:原方法的2D Dilation是固定参数的滤波器,无法适应不同尺度的抗锯齿需求。
  • 改进
    • 设计2D Mip滤波器,模拟物理成像中的盒式滤波(Box Filter),近似为2D高斯低通滤波。
    • 根据当前视角的采样率动态调整滤波核大小,实现多尺度抗锯齿。
效果
  • 消除缩小伪影:在缩小视角(Zoom Out)时,自适应平滑高斯投影,避免锯齿(如图2中1/4分辨率下的改进)。
  • 跨尺度泛化能力仅需单尺度训练,即可支持多尺度测试(如改变焦距或分辨率)。

4. 改进点3:实现简洁性与兼容性

  • 最小化代码修改
    • 3D平滑滤波仅在训练阶段应用,通过约束高斯优化实现。
    • 2D Mip滤波替换原渲染管线中的Dilation操作,无需复杂架构调整。
  • 保持实时性:仍基于GPU光栅化,维持原方法的高效渲染。

5. 实验验证

论文通过以下场景验证有效性:

  1. 单尺度训练,多尺度测试:在训练分辨率下,所有方法表现相似;但在缩放时,原3DGS和EWA滤波方法出现伪影,而Mip-Splatting保持稳定(图2)。
  2. 跨数据集泛化:在LLFF、Blender等数据集上,Mip-Splatting在视角缩放时PSNR/SSIM显著优于基线。

6. 与原方法的对比总结

方向原3DGSMip-Splatting
3D频率约束无显式约束,高斯尺寸自由优化基于Nyquist定理限制高斯最大频率
抗锯齿滤波固定2D Dilation动态2D Mip滤波(类似Mipmap)
多尺度渲染需多尺度训练,测试时易失真单尺度训练支持任意尺度测试
伪影类型放大(侵蚀)/缩小(锯齿)显著减少两类伪影
计算开销低(实时)保持实时性,滤波操作轻量

7. 技术意义

  • 理论贡献:首次将采样定理引入3D高斯表示,建立频率约束与几何优化的联系。
  • 实用价值:使3DGS更适合实际应用(如VR中动态焦距调整、电影级多分辨率输出)。
  • 启发方向:为后续工作提供了“3D频率分析+自适应滤波”的改进范式。

运行记录

安装环境依赖

pip install open3d
pip install plyfile
pip install lpips
pip install ninja
pip install submodules/diff-gaussian-rasterization
pip install submodules/simple-knn/

训练, 如果内存不够, 可以将-r 4改成-r 8

OMP_NUM_THREADS=4 CUDA_VISIBLE_DEVICES=0 python train.py -s /home/milton/Downloads/360_v2/bonsai/ -m output_model/bonsai --eval -r 4 --port 6009 --kernel_size 0.1

转为可以展示的ply文件

python create_fused_ply.py -m output_model/bonsai --output_ply fused/bonsai.ply

使用在线界面查看: https://niujinshuchong.github.io/mip-splatting-demo

评估? -r 4要和前面训练时的一致

OMP_NUM_THREADS=4 CUDA_VISIBLE_DEVICES=0 python render.py -m output_model/bonsai --data_device cpu --skip_train

第一次运行这步时, 会报warning并从 https://download.pytorch.org/models/vgg16-397923af.pt 下载528MB的文件.

OMP_NUM_THREADS=4 CUDA_VISIBLE_DEVICES=0 python metrics.py -m output_model/bonsai -r 4
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值