torch dataloader类/函数详解

本文详细介绍了PyTorch中DataLoader的功能与使用方法,包括如何通过设置参数如dataset、batch_size、shuffle等来加载和预处理数据集,适用于深度学习模型训练的数据加载流程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

函数定义
torch.utils.data.DataLoader(
dataset,
batch_size=1,
shuffle=False,
sampler=None,
batch_sampler=None,
num_workers=0,
collate_fn=None,
pin_memory=False,
drop_last=False,
timeout=0,
worker_init_fn=None,
multiprocessing_context=None,
)
dataset 传入dataset类型的数据集
batch-size默认为1 ,一次性输入多少行数据进去
shuffle 要不药每次输入的时候打乱数据

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值