PaddlePaddle飞桨课程 - 图像分割学习笔记(一)

本课程涵盖从经典到前沿的图像分割技术,包括语义分割、实例分割及全景分割等内容。通过理论讲解与实践操作相结合的方式,详细介绍FCN、U-Net、PSPNet、DeepLab等模型,并涉及图卷积网络在分割任务中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

 

目录

课程链接:

课程内容:

课程大纲:

第一天主要内容:图像分割综述

第二天主要内容:FCN讲解

第三天主要内容:U-Net模型与PSPNet模型详解

第四天主要内容:DeepLab系列详解

第五天主要内容:图卷积网络用于分割

第六天主要内容:实例分割与全景分割

第七天主要内容:课程总结


课程链接:

https://aistudio.baidu.com/aistudio/course/introduce/1767

课程内容:

1. 从经典算法到学界前沿,从技术细节到完整流程,语义分割、实例分割、全景分割;

2. 手把手理论指导+现场逐行coding.

课程大纲:

第一天主要内容:图像分割综述


1、初探语义分割
2、实战主要包括

  • basic_model.py 基本模型样式搭建
  • basic_dataloader.py 数据导入

  • basic_transforms.py 数据扩增的相关方法手段

第二天主要内容:FCN讲解


1.概述
2.上采样和下采样实战

  • 搭建FCN网络结构
  • basic_seg_loss.py分割loss的定义
  • basic_train.py 训练的基本格式

第三天主要内容:U-Net模型与PSPNet模型详解


1.概述
2.实现UNet/PSPNet

  • pspnet.py 网络结构的的搭建
  • unet.py 网络结构的搭建
  • infer.py预测代码的搭建

  • resnet_dilated.py 实现空洞卷积的搭建

第四天主要内容:DeepLab系列详解


1.DeepLab系列概述
2.实战DeepLabV3

  •  deeplab.py 网络结构搭建
  •  resnet_multi_grid.py  对resnet.py进行修改,实现Multi_grid机制。

第五天主要内容:图卷积网络用于分割


1.概述
2.GloRe, GCU, GINet讲解
3.GCN代码简要解析

第六天主要内容:实例分割与全景分割


1.概述
2.实例分割:Mask R-CNN和SOLO
3.全景分割:PanapticFPN和UPSNet

第七天主要内容:课程总结


1.主流分割数据集介绍
2.最近研究进展探讨
3.课程总结与Q&A