目录
目录
课程链接:
https://aistudio.baidu.com/aistudio/course/introduce/1767
课程内容:
1. 从经典算法到学界前沿,从技术细节到完整流程,语义分割、实例分割、全景分割;
2. 手把手理论指导+现场逐行coding.
课程大纲:
第一天主要内容:图像分割综述
1、初探语义分割
2、实战主要包括
- basic_model.py 基本模型样式搭建
-
basic_dataloader.py 数据导入
-
basic_transforms.py 数据扩增的相关方法手段
第二天主要内容:FCN讲解
1.概述
2.上采样和下采样实战
- 搭建FCN网络结构
- basic_seg_loss.py分割loss的定义
- basic_train.py 训练的基本格式
第三天主要内容:U-Net模型与PSPNet模型详解
1.概述
2.实现UNet/PSPNet
- pspnet.py 网络结构的的搭建
- unet.py 网络结构的搭建
-
infer.py预测代码的搭建
-
resnet_dilated.py 实现空洞卷积的搭建
第四天主要内容:DeepLab系列详解
1.DeepLab系列概述
2.实战DeepLabV3
- deeplab.py 网络结构搭建
-
resnet_multi_grid.py 对
resnet.py
进行修改,实现Multi_grid机制。
第五天主要内容:图卷积网络用于分割
1.概述
2.GloRe, GCU, GINet讲解
3.GCN代码简要解析
第六天主要内容:实例分割与全景分割
1.概述
2.实例分割:Mask R-CNN和SOLO
3.全景分割:PanapticFPN和UPSNet
第七天主要内容:课程总结
1.主流分割数据集介绍
2.最近研究进展探讨
3.课程总结与Q&A