机器学习(十二) - Backpropagation

Backpropagation

接着神经网络模型,我们开始讲讲神经网络是怎么训练参数的,那么首先就需要知道神经网络的代价函数是什么。

cost function

这里写图片描述
对于分类任务来说,神经网络的代价函数和逻辑回归的代价函数非常相似,神经网络前一项多的 ∑ k = 1 K \sum_{k=1}^K k=1K是因为多分类的关系,神经神经网络的输出是一个向量,那么有多少个分类,K就是多少。后一项是正则项,是对所有参数的惩罚,那么神经网络自然需要把每一层的权重矩阵的每一项都囊括进来,所以有了复杂的第二项,但其实本质都是一样的。

Backpropagation Algorithm

反向传递算法是神经网络更新参数,最小化代价函数的算法,这就类似于我们在线性回归和逻辑回归中用到的梯度下降算法一样。我们的目标是:
min ⁡ θ J ( θ ) \min_\theta J(\theta) θminJ(θ)
参数更新方程是 :
θ i j ( l ) : = θ i j ( l ) − α ∂ J ( θ ) ∂ θ i j ( l ) \theta_{ij}^{(l)} := \theta_{ij}^{(l)} - \alpha\frac{\partial J(\theta)}{\partial\theta_{ij}^{(l)}} θij(l):=θij(l)αθij(l)J(θ)
对于偏导数,我们运用链式法则,进行展开
∂ J ( θ ) ∂ θ i j ( l ) = ∂ J ( θ ) ∂ z i ( l + 1 ) ∂ z i ( l + 1 ) ∂ θ i j ( l ) = ∂ J ( θ ) ∂ z i ( l + 1 ) a j ( l ) \frac{\partial J(\theta)}{\partial\theta_{ij}^{(l)}}= \frac{\partial J(\theta)}{\partial z_{i}^{(l+1)}} \frac{\partial z_{i}^{(l+1)}}{\partial\theta_{ij}^{(l)}}= \frac{\partial J(\theta)}{\partial z_{i}^{(l+1)}}a_j^{(l)} θij(l)J(θ)=zi(l+1)J(θ)θij(l)zi(l+1)=zi(l+1)J(θ)aj(l)
a j ( l ) a_j^{(l)} aj(l)是我们已知的参数,而 ∂ J ( θ ) ∂ z i ( l + 1 ) \frac{\partial J(\theta)}{\partial z_{i}^{(l+1)}} zi(l+1)J(θ)我们并不知道,于是对于这个未知参数,我们引入一个所谓的error变量 δ \delta δ(残差)来表示,对于神经网络中除了输入层和bias,其余所有的神经元都有自己残差,表示为 δ i l \delta_{i}^{l} δil(第 l l l 层的第 i i i 个元)。
输出层的残差,我们定义为:
δ i ( L ) = a i ( L ) − y i \delta_i^{(L)} = a_i^{(L)}-y_i δi(L)=ai(L)yi
对于隐藏层的每一层每一个节点,都有:
KaTeX parse error: No such environment: align at position 7: \begin{̲a̲l̲i̲g̲n̲}̲ \delta_i^{(l)}…
这个残差的计算方程就很好的体现了“反向”,我们需要先从输出层开始,然后利用上面的方程依次求得前一层每个节点的残差。求得了残差,我们就能进行参数更新了。
θ i j ( l ) : = θ i j ( l ) − α ⋅ δ i ( l ) ⋅ a j ( l ) \theta_{ij}^{(l)} := \theta_{ij}^{(l)} - \alpha \cdot \delta_i^{(l)} \cdot a_j^{(l)} θij(l):=θij(l)αδi(l)aj(l)

这个结论没有考虑正则项,考虑正则项的情况就不去具体分析了,下面算法步骤是考虑了正则项的。

Algorithm Procedure

这里写图片描述


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值