eniops库中reduce函数使用方法

reduce 是 eniops 中的一个常用函数,用于对张量进行降维操作。它允许你通过指定维度名称和操作类型(如求和、均值等)来简化张量的形状。

import eniops
import torch

# 创建一个示例张量
x = torch.randn(2, 3, 4)

# 使用 reduce 进行降维操作
result = eniops.reduce(x, 'b c h -> b h', 'mean')

print(result.shape)  # 输出: torch.Size([2, 4])

输入张量 x 的形状为 (2, 3, 4),对应模式 ‘b c h’。

reduce 操作将 c 维度通过 ‘mean’ 操作降维,最终输出形状为 (2, 4),对应模式 ‘b h’。

除了mean,还有sum,max等降维方式.

如下,

result = eniops.reduce(x, 'b c h -> b h', 'sum')
print(result.shape)  # 输出: torch.Size([2, 4])

result = eniops.reduce(x, 'b c h -> b h', 'max')
print(result.shape)  # 输出: torch.Size([2, 4])
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值