利用Python实现多元回归预测汽车价格

引言:

AI技术的热门使得大家对机器学习有了更多的关注,作为与AI技术息息相关的一门课程,从头了解基础的机器学习算法就显得十分有必要,如:梯度下降,线性回归等。

正文:

本文将讲解线性回归中多元回回归的案例

机器学习大致可以分为监督学习,非监督学习、半监督学习还有更高级的强化学习。

线性回归是监督学习的一种,是回归问题,当然后续还有提及分类问题。监督学习,即有监督的学习,供给“机器”学习的数据集需要有一定要求,就是对于数据集需要有标签集,让它知道“这道题的答案”是什么,通过足够多的数据集,虽然不能完全准确的得到答案,但是能够在较小的误差范围内拟合大多数的数据。

比如说给你这样的一个数据集:

目的是预测汽车的价格。

或许要是我们手动的画出曲线,也是一件不可能的事情,这么多维度的特征,是无法实现画出来的。也或许我知识浅薄,暂时画不出来,但是可以将预测出的价格与实际价格相比较,那样也能十分直观的显示出预测的效果。

但是如何让“机器”知道呢?那么就要建立一个线性回归的模型,把数据扔给这个模型,让它自己学习,当然你要告诉他,什么样才是拟合不错的情况,就是要建立一个优化函数(损失函数)。

当然在数据集中可能有一些特立独行的点或者集合,会脱离曲线的走向趋势,那么我们往往需要对数据进行预处理,之后才能给机器学习,否则往往会产生很差的训练效果。或者说这么多特征,不一定是都有用的,我们可以利用一些方法去挑选有用的特征或者说影响力大的特征,这里可以使用的方法有:PCA(主元分析)、随机森林方法等。

现在不管是MATLAB还是Python进行编程,都有封装好的模型,只需要调用相应的模型即可,大大简化了编程的难度。比如对于线性回归问题,调用的模型就是:sklearn

中的LinearRegression(fit_intercept=True,copy_X=True,n_jobs=-1,positive=False)

对于刚刚提到的例子,经过编程学习到的相关系数有:

特征系数:

常数:

通过测试集验证 得分为/均方误差为

拟合后的散点图:

可见把散点图的趋势已经大概描述出来了,并且对于测试集验证之后的得分也还行,整体趋势还能看出来大概是y=x,那么说明预测的价格和实际价格差不多。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

有盐、在见

如此大气,散尽千金还复来~~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值