统计学---总结

本文总结了统计学中的数据分析方法,包括属性值数据的柱状图、直方图、饼状图分析;数值型数据的分布、中心趋势、离散趋势、异常值识别与处理;以及直方图、箱线图在分组比较中的应用。此外,还讨论了数据变换、散点图、相关系数和残差图在理解变量间关系和模型验证中的作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.对于属性值数据

可以用柱状图分析属性类别的数目等信息,以及行频率,列频率进行分析,以及饼状图,族形柱状图与结构柱状图(分组的柱形图和堆叠的柱形图)

 

 

2. 对于数值型数据,

1)首先通过直方图观察数据分布,是单峰,双峰还是均匀分布,左偏还是右偏,还是对称的,

2)然后分析中心趋势(中位数和均值)和离散趋势(四分位差,标准差,极差),通常,有偏分布,分析中位数和四分位差,对称分布,分析均值和标准差,注意,对于单峰分布,其四分位数差通常比标准差要大,若不是这样,需要重新检查数据分布是不是无偏的,有没有异常值存在。

3)细致讨论其他不常见的特征

对于多峰分布,需要分析出出现的原因,找到原因后,最好再数据分组进行分析;

需要指出明显的异常值。先对数据计算均值和标准差,然后对剔除异常值后的数据计算均值以及标准差,对他们的差别进行比较说明。异常值的存在对中位数和四分分位数差基本上没什么影响。

(均值与中位数相差不大,说明异常值影响不大;对多峰的数据,最好把他们区分开,然后分别进行描述)

 

3.利用直方

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值