
AI相关
文章平均质量分 80
mingupup
热爱C#
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
C#学习:构建一个更真实的基于LLM的简历评估系统
昨天的Demo以txt文件为例进行说明,并且评估标准写死了,跟真实的简历评估系统差别太大了。今天分享的是经过改进后更加真实的基于LLM的简历评估系统。使用AI生成了5份不同的简历,如下所示:程序员A:程序员B:程序员C:程序员D:程序员E:- 具备前端开发能力- 使用过Vue""";效果:- 具备后端开发能力- 熟悉go语言""";原创 2025-05-29 15:57:27 · 386 阅读 · 0 评论 -
C#学习:基于LLM的简历评估程序
在pocketflow的例子中看到了一个基于LLM的简历评估程序的例子,感觉还挺好玩的,为了练习一下C#,我最近使用C#重写了一个。准备不同的简历:查看效果:不足之处是现实的简历应该是pdf格式的,后面可以考虑转化为图片然后用VLM来试试。全部代码已上传至GitHub,地址:https://github.com/Ming-jiayou/PocketFlowSharp/tree/main/PocketFlowSharpSamples.Console/Resume_Qualification_Demo。原创 2025-05-29 15:56:25 · 1139 阅读 · 0 评论 -
手把手教你使用C#创建一个WebSearchAgent
最近我对PocketFlow比较感兴趣,不仅是因为它是一个极简的LLM框架,更加让我觉得很不错的地方在于作者提供了很多方便学习的例子,就算没有LLM应用开发经验,也可以快速上手。我比较喜欢C#,也想为C#生态做一点小小的贡献,因此创建了PocketFlowSharp项目。PocketFlowSharp项目的愿景是助力.NET开发者开发LLM应用。在我个人在学习实践的过程中,我发现很多项目不是那么“新手友好的”,这也没有办法,开发者更关注的是代码实现,文档写起来确实也很费劲。原创 2025-05-16 15:12:42 · 633 阅读 · 0 评论 -
使用PocketFlowSharp创建一个Human_Evaluation示例
全部代码在:https://github.com/Ming-jiayou/PocketFlowSharp/tree/main/PocketFlowSharpSamples.Console/Human_Evaluation。有时候AI生成的结果我们并不满意在进入下一步之前,我们需要对AI生成的结果进行人工审核,同意了才能进入下一个流程。Human_Evaluation就是人工判断的一个简单示例。原创 2025-05-16 15:11:31 · 580 阅读 · 0 评论 -
使用PocketFlow构建Web Search Agent
本文介绍的是PocketFlow的cookbook中的pocketflow-agent部分。回顾一下PocketFlow的核心架构:每一个节点的架构:“Pocket Flow,一个仅用 100 行代码实现的 LLM 框架”原创 2025-05-13 15:30:50 · 1222 阅读 · 0 评论 -
Pocket Flow,一个仅用 100 行代码实现的 LLM 框架
PocketFlow是我最近在探索的一个LLM 框架,我觉得很有意思,因此推荐给大家。这个框架最大的特点就是:“Pocket Flow,一个仅用 100 行代码实现的 LLM 框架”。我很好奇,一个框架只有100行代码是怎么做到的,它又有什么魅力呢?正如作者所言现在的LLM框架过于臃肿了!臃肿的抽象:正如 Octomind 的工程团队所解释的:“LangChain 在最初对我们简单的功能需求与它的使用假设相匹配时很有帮助。但其高级抽象很快使我们的代码更难以理解并令人沮丧地难以维护。原创 2025-05-13 15:29:45 · 695 阅读 · 0 评论 -
使用C#构建一个同时问多个LLM并总结的小工具
在AI编程时代,如果自己能够知道一些可行的解决方案,那么描述清楚交给AI,可以有很大的帮助。但是我们往往不知道真正可行的解决方案是什么?我自己有过这样的经历,遇到一个需求,我不知道有哪些解决方案,就去问AI,然后AI输出一大堆东西,我一个个去试,然后再换个AI问,又提出了不同的解决方案。在换AI问与一个个试的过程中好像浪费了很多时间。突然出现了一个想法,不是可以一下子把问题丢给多个AI,然后再总结一下出现最多的三个方案。那么这三个方案可行的概率会大一点。原创 2025-05-09 12:23:31 · 549 阅读 · 0 评论 -
使用这个工具,基于代码仓库直接生成教程文档,感觉比我自己写的还好
这是一个 Pocket Flow 的教程项目,一个仅100行代码的LLM框架。它爬取 GitHub 仓库,并从代码中构建知识库。它分析整个代码库以识别核心抽象及其交互方式,并将复杂的代码转化为带有清晰可视化内容的初学者友好教程。首先,我们定义一个服务多的就不放了,感兴趣的朋友可以去GitHub上看完整的,让我惊讶的地方是感觉gemini-2.5-pro-exp-03-25的图画的很不错,在教程中多放点这种图,会让读者更加清晰易懂。原创 2025-04-24 16:37:21 · 984 阅读 · 0 评论 -
使用CAMEL实现Graph RAG过程记录
本文为学习官方文档的学习记录。原创 2025-04-24 16:36:20 · 440 阅读 · 0 评论 -
使用CAMEL实现RAG过程记录
本文为学习使用CAMEL实现RAG的学习总结。参考自官方cookbook,地址:https://docs.camel-ai.org/cookbooks/advanced_features/agents_with_rag.html在官方cookbook分为了Customized RAG、Auto RAG、Single Agent with Auto RAG与Role-playing with Auto RAG四个部分。原创 2025-04-18 12:30:45 · 697 阅读 · 0 评论 -
使用CAMEL创建第一个Agent Society
🐫 CAMEL 是一个开源社区,致力于探索代理的扩展规律。相信,在大规模研究这些代理可以提供对其行为、能力和潜在风险的宝贵见解。为了促进这一领域的研究,实现了并支持各种类型的代理、任务、提示、模型和模拟环境。GitHub地址:https://github.com/camel-ai/camel。原创 2025-04-18 12:29:58 · 949 阅读 · 0 评论 -
AI工具推荐:使用AnythingLLM帮助你学习
AnythingLLM 是一个最容易使用的全能 AI 应用,可以进行 RAG、AI 代理等多种功能,无需编写代码或担心基础设施问题。GitHub地址:https://github.com/Mintplex-Labs/anything-llm官方网址:https://anythingllm.com/AnythingLLM是我体验之后觉得很好的一款开源软件,使用起来非常简单方便,对于有构建个人知识库需求的人非常合适。原创 2025-04-08 10:39:26 · 213 阅读 · 0 评论 -
通过TTS模型让猴哥给你讲个故事
TTS(Text-to-Speech,文本转语音)技术是一种将书面文本转换为口语语音的技术。这种技术广泛应用于各种场景,如语音助手、导航系统、有声读物、自动电话应答系统等。TTS系统的目的是为了让计算机能够“说出”人们能理解的语言,从而改善人机交互的体验,使得信息传递更加自然和亲切。本文简单介绍了TTS技术,使用了硅基流动提供的TTS模型,通过让猴哥给我们讲个故事的demo,了解TTS的用途,学习使用ffmpeg播放音频数据,希望对你有所帮助。原创 2025-04-08 10:38:18 · 1075 阅读 · 0 评论 -
mcp-playwright测评
mcp-playwright是一个使用 Playwright 提供浏览器自动化能力的模型上下文协议服务器。该服务器使 LLMs 能够与网页交互、截屏,并在真实的浏览器环境中执行 JavaScript。GitHub地址:https://github.com/executeautomation/mcp-playwright。安装但是这样配置在Cline中会报错,如下所示:"args": ["/c","npx","-y",现在看一下mcp-playwright提供的所有功能。原创 2025-03-20 15:12:23 · 796 阅读 · 1 评论 -
Camel多智能体框架初探
CAMEL 是一个开源社区,致力于探索代理的扩展规律。我们相信,在大规模研究这些代理可以提供对其行为、能力和潜在风险的宝贵见解。为了促进该领域的研究,我们实现了并支持各种类型的代理、任务、提示、模型和模拟环境。CAMEL :找到智能体的扩展规律。第一个也是最好的多智能体框架。CAMEL 框架设计原则可演化性该框架通过生成数据并与环境交互,使多智能体系统能够持续进化。这种进化可以由可验证奖励驱动的强化学习或监督学习驱动。规模性。原创 2025-03-20 15:11:16 · 454 阅读 · 0 评论 -
使用Avalonia/C#构建一个简易的跨平台MCP客户端
前几天介绍了在C#中构建一个MCP客户端。最近正在学习Avalonia,所以就想用Avalonia实现一个简易的跨平台MCP客户端。接入别人写的或者自己写的MCP服务器就可以利用AI做很多有意思的事情。接下来我有时间也会和大家继续分享一些好玩的MCP服务器。原创 2025-03-18 19:08:17 · 621 阅读 · 0 评论 -
一起来玩mcp_server_sqlite,让AI帮你做增删改查!!
使用C#构建了一个简单的MCP客户端,以下为运行这个简单客户端的截图,同样可以在Cline等其它的一些MCP客户端中玩耍。本文使用的控制台程序代码在:https://github.com/Ming-jiayou/mcp_demo。–directory后写这个脚本所在的文件夹,–db-path后写数据库所在的路径。由于模型智能程度的原因,可能也会出现一些错误,比如我需要沟通很多次才真的修改了。以上就使用AI对数据库表进行增删改查的效果了。请注意不要随便用于生产环境,先简单玩一玩就好。感兴趣快来玩玩玩吧!原创 2025-03-18 19:06:57 · 656 阅读 · 0 评论 -
OpenManus执行流程介绍
要想快速理解OpenManus能做什么,我们先从它的prompt入手。这里面提到的PythonExecute、FileSaver、BrowserUseTool与GoogleSearch就是OpenManus会使用到的工具了。原创 2025-03-14 18:04:19 · 713 阅读 · 0 评论 -
使用C#创建一个MCP客户端
网上使用Python创建一个MCP客户端的教程已经有很多了,而使用C#创建一个MCP客户端的教程还很少。为什么要创建一个MCP客户端呢?创建了一个MCP客户端之后,你就可以使用别人写好的一些MCP服务了。对C#使用MCP感兴趣的朋友可以关注这个项目:https://github.com/PederHP/mcpdotnet。有问题欢迎一起交流学习。原创 2025-03-14 18:03:34 · 1023 阅读 · 0 评论 -
通过fetch_mcp,让Cline能够获取网页内容
GitHub地址:https://github.com/zcaceres/fetch-mcp此MCP服务器提供了以多种格式(包括HTML、JSON、纯文本和Markdown)获取网络内容的功能。原创 2025-03-11 10:58:39 · 1109 阅读 · 0 评论 -
Manus的开源复刻OpenManus初探
Manus需要邀请码才能体验,目前大部分人都体验不到。有几个大佬花3个小时就复现了一个简单的原型OpenManus,让我们体验体验吧!!截至目前,该项目已经获得了25.9k颗星标,是一个非常热门的项目。GitHub地址:https://github.com/mannaandpoem/OpenManus。原创 2025-03-11 10:57:33 · 547 阅读 · 0 评论 -
给大模型添加联网功能的免费方案,以langchain为例
LangChain 是一个用于开发由大型语言模型 (LLM) 驱动的应用程序的框架。简单来说,它可以帮助你更轻松地构建利用 LLM(例如 OpenAI 的 GPT 模型、Google 的 PaLM 模型等)的应用程序。以上就是今天的分享,介绍了如何自己动手快速且免费地为自己的AI应用添加联网功能,希望对你有所帮助。原创 2025-03-02 11:27:25 · 736 阅读 · 0 评论 -
创建一个MCP服务器,并在Cline中使用,增强自定义功能。
MCP 是一个开放协议,它标准化了应用程序如何向LLMs提供上下文。可以将 MCP 视为 AI 应用程序的 USB-C 端口。正如 USB-C 提供了一种标准化的方法来将您的设备连接到各种外围设备和配件一样,MCP 提供了一种标准化的方法来将 AI 模型连接到不同的数据源和工具。MCP 帮助您在 LLMs 之上构建代理和复杂的工作流程。一个不断增长的预构建集成列表,您的 LLM 可以直接插入其中在LLM供应商和厂商之间切换的灵活性在您的基础设施内保护数据的最佳实践。原创 2025-03-02 11:26:02 · 1993 阅读 · 0 评论 -
使用browser-use进行数据爬取实战记录
前面的文章介绍了browser-use的基本使用,今天带来的分享是使用browser-use进行一次数据爬取的实战(不过还是demo级别的)。使用到的三个玩法分别是使用自己的浏览器、定义输出结构与注册一个行为。其次,我们来定义自定义输出。import os# d:\Learning\AI-related\browser-use-demo\.env注意:您需要关闭您的Chrome浏览器,以便此操作可以在调试模式下打开您的浏览器task="""原创 2025-02-24 10:57:27 · 1521 阅读 · 2 评论 -
# 如何让大模型安全地自动生成代码并执行? ## 前言
本文带来的分享是在crewai中使用代码解释器,为了安全,代码在docker中运行。为什么要使用代码解释器呢?之前的文章中使用的是function call + 各种工具 来完成一个任务,比如文件读取工具、文件保存工具等。但是用户的需求是多变的,你很难提前写好所有的工具。原创 2025-02-24 10:56:27 · 887 阅读 · 0 评论 -
使用crewai创建属于你自己的AI团队
CrewAI 是一个用于协调自主 AI 代理的前沿框架。CrewAI 允许你创建 AI 团队,其中每个代理都有特定的角色、工具和目标,协同工作以完成复杂任务。把它想象成组建你的梦之队——每个成员(代理)都带来独特的技能和专业知识,无缝协作以实现你的目标。最近使用了crewai这个框架,我觉得是一个比较好用的AI Agent框架,因此推荐给大家。在crewai中涵盖了AgentsTasksCrewsFlowsKnowledgeLLMs与Tools等这些核心概念。原创 2025-02-19 18:14:20 · 908 阅读 · 0 评论 -
Word中接入大模型教程
为什么要在word中接入大模型呢?个人觉得最大的意义就是不用来回切换与复制粘贴了吧。今天分享一下昨天实践的在word中接入大模型的教程。在word中接入大模型最简单的方式就是使用vba。获取用户选中的文本,未选择弹窗提示。向大模型API接口发送一个Post请求。解析返回的json数据,获取content的内容。为了用户体验,打造假流式效果。如果你在实践过程中,遇到了问题,也可以联系我哦。原创 2025-02-17 14:09:47 · 1737 阅读 · 0 评论 -
AI工具推荐:领先的开源 AI 代码助手——Continue
之前介绍了VS Code中的AI插件Cline与Roo Code,这两个都是根据给定一个任务,开始自动写代码的。除了这两个AI代码工具之外,在平常我还很喜欢的就是Continue。Continue 是领先的开源 AI 代码助手。你可以连接任何模型和任何上下文,在 VS Code 和 JetBrains 中构建自定义的自动完成功能和聊天体验。GitHub地址:https://github.com/continuedev/continue。原创 2025-02-15 13:43:31 · 262 阅读 · 0 评论 -
浏览器自动化与AI Agent结合项目browser-use初探
browser-use是将您的 AI 代理连接到浏览器的最简单方式。它通过提供一个强大且简单的接口来实现 AI 代理访问网站的自动化。GitHub地址:https://github.com/browser-use/browser-use。目前已经获得了27.3k颗stars,2.7kforks,看得出来是一个比较热门的项目。我在上手体验了之后,发现确实是一个很有趣的项目,因此推荐给大家。以上就是使用硅基流动中的Qwen/Qwen2.5-72B-Instruct快速体验browser-use的效果。原创 2025-02-12 09:31:16 · 865 阅读 · 0 评论 -
AI工具推荐——open-interpreter
Open Interpreter 是一个能让大型语言模型在你本地电脑上运行代码的工具。简单来说:它提供了一个类似于 ChatGPT 的自然语言界面,让你能通过代码与电脑互动。创建和编辑各种类型的文件(照片、视频、PDF 等)。控制 Chrome 浏览器进行研究。分析数据集。Open Interpreter 为语言模型配备了一个函数,该函数可以在 Python、JavaScript 和 Shell 等各种语言中执行代码。然后,它会将模型的消息、正在运行的代码和系统的输出流式传输到你的终端。原创 2025-02-08 10:46:17 · 1001 阅读 · 0 评论 -
使用Chainlit快速构建一个对话式人工智能应用体验DeepSeek-R1
它在数学、代码和推理任务中与 OpenAI-o1 表现相当,并且通过精心设计的训练方法,提升了整体效果。在chainlit的cookbook中提供了一个接入DeepSeek-R1的简单demo,在https://github.com/Chainlit/cookbook/tree/main/deepseek-r1。现在硅基流动也有DeepSeek-R1并且邀请注册可得14元不过期额度,邀请链接:https://cloud.siliconflow.cn/i/Ia3zOSCU。回答的效果确实很不错。原创 2025-02-04 11:48:23 · 402 阅读 · 0 评论 -
DeepSeekV3+Roo Code,智能编码好助手
硅基流动最近上线了deepseek-ai/DeepSeek-R1与deepseek-ai/DeepSeek-V3,感兴趣快来试试吧!邀请注册得14元不过期额度:https://cloud.siliconflow.cn/i/Ia3zOSCU。原创 2025-02-02 08:59:52 · 777 阅读 · 0 评论 -
AutoGen入门-让两个AI自行聊天完成任务
AutoGen 是一个开源编程框架,用于构建 AI 代理并促进多个代理之间的合作以解决问题。AutoGen 旨在提供一个易于使用和灵活的框架,以加速代理型 AI 的开发和研究,就像 PyTorch 之于深度学习。它提供了诸如代理之间可以对话、LLM 和工具使用支持、自主和人机协作工作流以及多代理对话模式等功能。主要特点AutoGen使得基于多智能体对话构建下一代LLM应用程序变得非常容易。它简化了复杂LLM工作流的编排、自动化和优化。它最大化了LLM模型的性能并克服了它们的弱点。原创 2025-01-07 17:27:51 · 746 阅读 · 0 评论 -
C# AIModelRouter:使用不同的AI模型完成不同的任务
AI模型路由,模型的能力有大小之分,有些简单任务,能力小一点的模型也能很好地完成,而有些比较难的或者希望模型做得更好的,则可以选择能力强的模型。可以降低AI模型的使用成本,毕竟能力强的模型会更贵一点,省着用挺好的。当你的提问中包含一个ServiceId的时候,就会选择那个服务ID对应的模型进行回复,如果不包含就选择第一个服务ID对应的模型进行回复。实际上这样使用,很容易让AI迷惑,因为我们总是要带上一个ServiceId,如果让AI根据用户的提问,自己决定用哪个模型是更好的。原创 2025-01-06 11:49:14 · 459 阅读 · 0 评论 -
PaperAssistant:使用Microsoft.Extensions.AI实现
上篇文章介绍了使用Semantic Kernel Chat Completion Agent实现的版本。使用C#构建一个论文总结AI Agent今天来介绍一下使用Microsoft.Extensions.AI的版本。Microsoft.Extensions.AI 是微软为 .NET 生态系统推出的一组核心库,旨在为开发者提供统一的 C# 抽象层,简化与 AI 服务的集成。原创 2025-01-04 15:26:11 · 931 阅读 · 0 评论 -
使用C#构建一个论文总结AI Agent
我觉得将日常生活中一些简单重复的任务交给AI Agent,是学习构建AI Agent应用一个很不错的开始。本次分享我以日常生活中一个总结论文的简单任务出发进行说明,希望对大家了解AI Agent有所帮助。任务可以是多种多样的,真的帮助自己提升了效率,那就是一个很不错的开始了!!我的这个简单任务是这样的,有一篇文献,如下所示:我想要对该文献进行总结,然后将md格式笔记保存。原创 2025-01-02 16:56:06 · 1103 阅读 · 0 评论 -
TesseractOCR-GUI:基于WPF/C#构建TesseractOCR简单易用的用户界面
前篇文章使用Tesseract进行图片文字识别介绍了如何安装TesseractOCR与TesseractOCR的命令行使用。但在日常使用过程中,命令行使用还是不太方便的,因此今天介绍一下如何使用WPF/C#构建TesseractOCR简单易用的用户界面。本项目可以帮助人们更简单方便地使用TesseractOCR,对WPF/C#新手程序员,也可以当作一个简单的练手小项目。如果对你有所帮助,点颗star,就是最大的支持!!原创 2024-12-07 14:47:27 · 678 阅读 · 0 评论 -
AI工具推荐——Cherry Studio
Cherry Studio是一款支持多模型服务的 Windows/macOS GPT 客户端。多样化的大型语言模型提供商支持☁️ 主要的大型语言模型云服务:OpenAI、Gemini、Anthropic等🔗 AI网络服务集成:Claude、Peplexity、Poe等💻 本地模型支持,通过OllamaAI助手与对话📚 300+ 预配置的AI助手🤖 自定义助手创建💬 多模型同时对话文档与数据处理📄 支持文本、图像、办公文件、PDF等格式☁️ WebDAV文件管理与备份。原创 2024-12-04 08:53:25 · 13705 阅读 · 0 评论 -
Microsoft.Extensions.AI 初探
在今年的.NET Conf上Steve Sanderson带来了题为“AI Building Blocks - A new, unified AI layer”的演讲。该演讲的主要内容如下:“大多数.NET应用程序可以通过AI功能变得更加强大和高效,例如语义搜索、自动分类、摘要生成、翻译、数据提取,甚至是基于聊天的助手。但直到现在,.NET本身还没有统一的AI概念表示标准,因此开发者需要组合使用许多不相关的API。原创 2024-11-20 10:55:03 · 1109 阅读 · 0 评论 -
在SimpleRAG中使用SiliconCloud快速测试Function Calling
函数调用允许您将模型如gpt-4o与外部工具和系统连接起来。这对于许多事情都很有用,比如为AI助手赋能,或者在你的应用程序与模型之间建立深度集成。如果您了解或者使用过Semantic Kernel可能会发现除了OpenAI支持Function Calling的模型之外,自动函数调用好像并不好用,国产大模型几乎都不能使用,由于想解决这个问题,在GitHub上找到了一个大佬的方法。原创 2024-08-29 08:04:05 · 2050 阅读 · 0 评论