
计算机视觉
计算机视觉
~华仔呀
-----------
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
三维点云中DBSCAN的使用
# -*- coding: utf-8 -*-import numpy as npimport matplotlib.pyplot as pltfrom mpl_toolkits.mplot3d import Axes3Dsize = 30##计算欧式距离def distEuclid(x,y): return np.sqrt(np.sum((x-y)**2))##随机产生n个dim维度的数据 (这里为了展示结果 dim取2或者3)def genDataset(n,dim):.原创 2021-06-29 22:48:41 · 1064 阅读 · 0 评论 -
PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space论文解读
PointNet++核心问题:点云的分类/语义分割1、网络构成PointNet提取特征的方式是对所有点云数据提取了一个全局的特征(见上图),显然,这和目前流行的CNN逐层提取局部特征的方式不一样。受到CNN的启发,作者提出了PointNet++,它能够在不同尺度提取局部特征,通过多层网络结构得到深层特征。PointNet++由以下几个关键部分构成:1.1采样层(sampling)激光雷达单帧的数据点可以多达100k个,如果对每一个点都提取局部特征,计算量是非常巨大的。因此,作者.原创 2020-07-26 20:46:49 · 624 阅读 · 0 评论 -
基于K近邻的反距离权重插值——IDW
基于K近邻的反距离权重插值——IDW基本思想离散点距离所估计的点越近,则对所估计的点影响越大,权值越大;反之,离散点距离所估计的点越远,则影响越小。上图为pointnet++中的基于K近邻的反距离权重插值,论文中p=2,k=3。...原创 2020-07-25 23:24:59 · 898 阅读 · 0 评论 -
Batch Normalization(BN)——批量归一化
尺度不变性首先讲一下尺度不变性这一概念:如果一个机器学习算法在缩放全部或部分特征后不影响学习和预测,就称该算法具有尺度不变性。还有神经网络具有尺度不变性,因为网络可以通过参数的调整能适应不同的尺度的特征。数据归一化我们看一下数据归一化,如图(a)未归一化的数据的等高线,由于数据尺度上的不同,造成大多数梯度的方向并不是最优的搜索方向。如果我们把数据归一化成相同的尺度如图(b),那么大部分梯度的方向近似于最优搜索的方向,这样在梯度下降求解时,训练效率大大提高。归一化方法1、最小最大归一化2、标原创 2020-07-19 22:39:33 · 684 阅读 · 1 评论 -
one-hot编码
one-hot编码解析1、什么是one-hot编码?One-Hot编码,又称为一位有效编码,主要是采用N位状态寄存器来对N个状态进行编码,每个状态都由他独立的寄存器位,并且在任意时候只有一位有效。2、如何编码?例如:要编码 0 - 9 :用十位的0和1进行编码0:10000000001:01000000002:00100000003:00010000004:00001000005:00000100006:00000010007:00000001008:00000000109:00原创 2020-07-15 15:13:11 · 197 阅读 · 0 评论 -
FPS(Farthest Point Sampling)——最远点采样
1、算法流程假设点个数为N,N = {P1,P2,…,Pn},经过采样后点的集合为S,初始时S = {},采样c个点<1> 在N个点中随机选择1个点Pk1,放入S,S = {Pk1}<2> 计算剩余n-1个点到点集S的距离,总共得到n-1个距离,选取距离点集S最远的点Pk2,放入S,S = {Pk1,Pk2}<3> 计算剩余n-2个点到点集S的距离,对于n-2个点中的其中一点来说,此时点集S中有两个点,我们计算得到两个距离,选择最小的那个距离,作为该点到集合的距离原创 2020-07-11 10:06:36 · 2972 阅读 · 1 评论 -
CV顶会
作为刚入门的CV新人,要记住计算机视觉方面的三大顶级国际会议:ICCV,CVPR和ECCV,统称为ICE。ICCV的全称是International Comference on Computer Vision。两年一次,是公认的三个会议中级别最高的。CVPR的全称是International Conference on Computer Vision and Pattern Recogin...原创 2020-04-13 16:28:24 · 1496 阅读 · 0 评论 -
Faster R-CNN论文复现
主要看两个博客:博客一:逐字理解目标检测一:https://blog.csdn.net/qq_32678471/article/details/84776144逐字理解目标检测二:https://blog.csdn.net/qq_32678471/article/details/84792307逐字理解目标检测三:https://blog.csdn.net/qq_32678471/...原创 2020-03-07 10:04:26 · 703 阅读 · 0 评论 -
R-CNN、Fast R-CNN、Faster R-CNN、Mask R-CNN网络结构
https://blog.csdn.net/briblue/article/details/82012575原创 2020-02-26 13:18:03 · 823 阅读 · 0 评论 -
目标检测性能评价指标(mAP、IOU)
https://blog.csdn.net/qq_29893385/article/details/81213377原创 2020-02-26 13:03:43 · 549 阅读 · 0 评论