Python线性回归:加载共享自行车租赁数据集 BikeSharing.csv。 1. 按以下要求处理数据集 (1)分离出仅含特征列的部分作为 X 和仅含目标列的部分作为 Y。

加载共享自行车租赁数据集 BikeSharing.csv。

  1. 按以下要求处理数据集
    (1)分离出仅含特征列的部分作为 X 和仅含目标列的部分作为 Y。
    (2)将数据集拆分成训练集和测试集(70%和 30%)。
    (3)对数据进行标准化处理
  2. 建立回归模型
    分别用 LinearRegression 和 SGDRegression 两种方法建模。
  3. 结果比对
    (1)分别对比两种模型在测试集上的预测性能(计算 score)。
    (2)分别测试学习率(参数 eta0)取 0.005, 0.01, 0.015, 0.02, 0.025, 0.03, 0.035, 0.04,
    0.045, 0.05 时,SGD 模型的性能得分,对测试结果进行绘图。
    使用Jupyter对数据建立回归模型:
    在这里插入图片描述
import numpy as np
# 导入sklearn中的线性模型类和模型验证类
from sklearn import model_selection
import matplotlib.pyplot as plt
#导入线性模型类
from sklearn.linear_model import LinearRegression
from sklearn.linear_model import SGDRegressor
from sklearn.preprocessing import StandardScaler
#为便于观察结果,对numpy作以下两项设置
np.set_printoptions(suppress= True) #取消numpy的科学记数显示
np.set_printoptions(precision=4)    #设置保留小数位数是4

# # 使用Numpy加载共享自行车租赁数据集 BikeSharing.csv,分离出仅含特征列的部分作为 X 和仅含目标列的部分作为 Y。
bike = np.loadtxt(r'BikeSharing.csv',dtype=float,delimiter=',',skiprows
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值