加载共享自行车租赁数据集 BikeSharing.csv。
- 按以下要求处理数据集
(1)分离出仅含特征列的部分作为 X 和仅含目标列的部分作为 Y。
(2)将数据集拆分成训练集和测试集(70%和 30%)。
(3)对数据进行标准化处理 - 建立回归模型
分别用 LinearRegression 和 SGDRegression 两种方法建模。 - 结果比对
(1)分别对比两种模型在测试集上的预测性能(计算 score)。
(2)分别测试学习率(参数 eta0)取 0.005, 0.01, 0.015, 0.02, 0.025, 0.03, 0.035, 0.04,
0.045, 0.05 时,SGD 模型的性能得分,对测试结果进行绘图。
使用Jupyter对数据建立回归模型:
import numpy as np
# 导入sklearn中的线性模型类和模型验证类
from sklearn import model_selection
import matplotlib.pyplot as plt
#导入线性模型类
from sklearn.linear_model import LinearRegression
from sklearn.linear_model import SGDRegressor
from sklearn.preprocessing import StandardScaler
#为便于观察结果,对numpy作以下两项设置
np.set_printoptions(suppress= True) #取消numpy的科学记数显示
np.set_printoptions(precision=4) #设置保留小数位数是4
# # 使用Numpy加载共享自行车租赁数据集 BikeSharing.csv,分离出仅含特征列的部分作为 X 和仅含目标列的部分作为 Y。
bike = np.loadtxt(r'BikeSharing.csv',dtype=float,delimiter=',',skiprows