DeepSeek-R1-Distill-Llama-70B + Dify (私有知识库)【鲲鹏+昇腾-国产化信创】

配置

鲲鹏 2 * 920 + 4 * Atlas 300I duo (96G)
系统openEuler 22.03-LTS ,记得先安装好合适部署dify的docker和docker compose版本
可以参考openEuler 22.03 LTS (aarch64)系统上离线安装 Docker 27.5(或指定版本)和 Docker Compose
参考文章:https://www.hiascend.com/software/modelzoo/models/detail/ee3f9897743a4341b43710f8d204733a
感谢昇腾社区,魔搭社区

部署相关环境

根据我之前文章鲲鹏服务器+昇腾卡(Atlas 300I pro)搭建DeepSeek-R1-Distill-Qwen-7B(自己存档详细版)
创建相关容器

下载模型权重DeepSeek-R1-Distill-Llama-70B

DeepSeek-R1-Distill-Llama-70B

部署Dify

国内pull太慢,要更换docker国内源

sudo mkdir -p /etc/docker

sudo tee /etc/docker/daemon.json <<-'EOF'
{
    "registry-mirrors": [
    	"https://docker.m.daocloud.io",
    	"https://docker.imgdb.de",
    	"https://docker-0.unsee.tech",
    	"https://docker.hlmirror.com",
    	"https://docker.1ms.run",
    	"https://func.ink",
    	"https://lispy.org",
    	"https://docker.xiaogenban1993.com"
    ]
}
EOF

sudo systemctl daemon-reload && sudo systemctl restart docker

sudo docker pull hello-world

选择Docker Compose部署
在这里插入图片描述
dify官网部署手册
我docker版本和docker compose版本如下:
在这里插入图片描述

克隆 Dify 源代码至本地环境。
假设当前最新版本为 0.15.3
git clone https://github.com/langgenius/dify.git --branch 0.15.3
进入 Dify 源代码的 Docker 目录
cd dify/docker
复制环境配置文件
cp .env.example .env

启动 Docker 容器

如果版本是 Docker Compose V2,使用以下命令:
docker compose up -d
如果版本是 Docker Compose V1,使用以下命令:
docker-compose up -d

启动成功如下:
在这里插入图片描述

启动模型

在这里插入图片描述
记得参考我之前部署7B的文章启动模型
鲲鹏服务器+昇腾卡(Atlas 300I pro)搭建DeepSeek-R1-Distill-Qwen-7B(自己存档详细版)
参考:昇腾社区部署文章

Dify连接DeepSeek-R1-Distill-Llama-70B

选择openAI API接口,填入API和模型名称,记得要跟你config.json那个文件的模型名称一致
在这里插入图片描述

导入数据测试

在这里插入图片描述
在这里插入图片描述
测试没问题哈,就是回答慢了点,毕竟1秒也就几个字

<think>好的,用户的问题是在Atlas 300I Duo上部署DeepSeek模型的教程。我需要先理清用户的真实需求,可能他们有一个具体的硬件环境,想要运行大语言模型,但遇到了一些挑战。用户提到的Atlas 300I Duo是华为的加速卡,可能需要特定的框架和配置。 首先,我需要回顾已有的引用内容。引用[3]和[4]提到了DeepSeek-R1和mindie框架的部署步骤,包括修改config.json模型路径,使用华为的环境搭建。引用[2]提到用户可能因为硬件限制选择了较小的模型,比如deepseek-r1.5b,这说明在资源有限的设备上,选择适合的模型版本很重要。 接下来,用户需要的是具体的步骤教程,可能包括环境准备、模型下载、配置修改、推理测试等。需要分步骤说明,确保结构清晰。同时,用户可能关心如何获取和配置必要的软件,如mindie推理框架,以及如何处理模型文件的权限问题,如引用[4]中提到的chmod命令。 还要注意模型路径的正确设置,这在引用[3]中被强调。另外,用户可能需要了解如何验证部署是否成功,比如运行简单的推理测试。此外,兼容性问题和性能优化也是潜在的需求,比如模型量化或使用华为的CANN加速库。 需要确保回答中的步骤准确,并引用相关的引用来源。同时,生成的相关问题需要覆盖用户可能进一步询问的方向,比如性能优化、环境配置问题、应用场景等。最后,保持回答的中文,使用正确的LaTeX格式,并检查所有引用标识是否正确对应。</think>在Atlas 300I Duo上部署DeepSeek模型的步骤如下: ### 一、环境准备 1. **硬件要求**:确保Atlas 300I Duo已安装并配置华为昇腾CANN软件栈(推荐6.0+版本) 2. **框架选择**:需使用适配昇腾芯片的推理框架,如华为提供的`mindie`框架[^4] 3. **模型下载**: ```bash # 下载DeepSeek模型(建议选择适配昇腾的版本) modelscope download --model deepseek-ai/DeepSeek-R1-Distill-Qwen-7B # [^1] ``` 注意:若硬件资源有限,可选择较小模型如`deepseek-r1.5b`[^2] ### 二、模型部署 1. **配置文件修改**: - 进入模型根目录 - 修改`config.json`文件,设置正确的模型路径: ```json { "model_path": "/home/[user]/modelscope/deepseek/distill-32b" # [^3] } ``` - 调整文件权限: ```bash chmod 640 config.json # [^4] ``` 2. **框架适配**: - 从昇腾社区下载`mindie`推理框架 - 将模型加载到框架中: ```python from mindie import InferenceEngine engine = InferenceEngine(model_path="/path/to/model") ``` ### 三、推理测试 ```python # 示例代码 inputs = "中国的首都是哪里?" outputs = engine.generate(inputs, max_length=50) print(outputs) ``` 注意:首次运行需进行算子编译,耗时约5-15分钟[^3] ### 四、性能优化 1. 开启混合精度模式 2. 使用`AscendCL`进行算子加速 3. 对模型进行量化压缩(建议使用华为昇腾模型压缩工具)
评论 14
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值