深度学习-第一篇-环境搭建(离线)

本文详细介绍了如何在离线环境下,从安装win7+ubuntu16.04双系统开始,逐步配置英伟达显卡驱动、CUDA8.0、cuDNN6.0、Anaconda3、Tensorflow 1.4 GPU版本、Pycharm,以及可选的Keras和Pytorch。整个过程适用于没有网络连接的实验室机器。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

深度学习-第一篇-环境搭建(离线)

       如果没有动手跑过网络,只看理论真的不算真正入门了DL。非常高兴,在2018年的年初,实验室终于配了一台带N卡的计算机。深度学习之旅可以开始了,撒花~

       先说说实验室机器的硬件配置:

型号规格

数量

CPU处理器:E5-2696V3 2.3GHz 18核

1

主板:超微X10DAI双路

1

内存:三星16G ECC REG

2

SSD:128GB

1

ST:2TB

1

显卡:华硕GTX1080TI-11G

1

机箱:塔式机箱

1

电源:1200W

1

散热器

<
### 如何在特定操作系统上安装和配置YOLOv5进行深度学习 #### 安装和配置环境 为了成功部署YOLOv5,在目标操作系统上需先建立合适的开发环境。对于Windows用户来说,推荐使用Anaconda来管理Python版本及其依赖库[^2]。 #### 准备工作 - **安装Anaconda**: Anaconda是一个广泛使用的科学计算平台,它包含了Conda作为包管理和虚拟环境工具。可以从官方网站下载适合操作系统的最新版Anaconda并按照指示完成安装过程。 - **创建新的Conda环境**: 打开命令提示符或Anaconda Prompt, 输入`conda create --name yolov5 python=3.8` 创建一个新的名为yolov5的环境,并指定Python版本为3.8。 - **激活新创建的环境**: 使用 `conda activate yolov5` 命令切换到刚刚创建好的环境中去。 #### 下载YOLOv5源码及相关资源 访问官方GitHub仓库获取最新的YOLOv5代码库。可以克隆整个存储库或者直接下载ZIP压缩包解压至本地磁盘中。此外还需要注意的是,如果网络条件不允许在线安装必要的Python库,则可考虑采用离线方式预先准备好所需的依赖文件,并将其放置于项目的根目录内以便后续安装时调用这些预存的数据。 #### 配置依赖关系 进入YOLOv5所在的文件夹路径之后执行以下pip指令来进行必需组件的自动加载: ```bash pip install -r requirements.txt ``` 这一步骤会读取requirements.txt文档里列举出来的各项需求列表从而确保所有第三方模块都被正确引入进来支持程序正常运作。 #### 测试安装成果 最后可以通过运行一些简单的测试样例验证当前环境下能否顺利启动YOLOv5框架以及其基本功能是否完好无损。比如尝试加载预训练权重文件并对单张图片实施对象检测任务来看看效果如何。 ```python import torch from utils.general import non_max_suppression from models.experimental import attempt_load device = 'cuda' if torch.cuda.is_available() else 'cpu' model = attempt_load('weights/yolov5s.pt', map_location=device) # 加载模型 imgsz = 640 # 图像尺寸大小 conf_thres = 0.25 # 置信度阈值 iou_thres = 0.45 # NMS IOU阈值 def detect(image_path): img = ... # 处理输入图像 pred = model(img)[0] det = non_max_suppression(pred, conf_thres, iou_thres)[0] if __name__ == '__main__': image_path = './data/images/bus.jpg' detect(image_path) ``` 上述脚本展示了怎样快速检验YOLOv5是否能够针对给定样本做出预期响应[^1]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值