
机器学习
文章平均质量分 69
ML_amateur
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
机器学习(二)——单变量线性回归
我们的第一个机器学习算法——线性回归算法。有时我们把这个算法也称为Batch梯度下降算法,每一步下降都遍历了整个训练集的样本。模型描述在监督学习中我们有一个数据集,这个数据集被称训练集。假使我们回归问题的训练集(Training Set)如下表所示:符号定义:m表示训练样本的数量x表示输入变量(或者特征)y表示输出变量(预测的目标变量)(x,y)表示一个训练样本(x(i)...原创 2018-11-19 00:40:10 · 253 阅读 · 0 评论 -
机器学习(三)——线性回归
矩阵和向量矩阵是二维数组的另一种说法。矩阵的维数即行数×列数。Aij指第i行,第j列的元素。向量是一种特殊的矩阵,是只有一列的矩阵。通常在书写时,使用大写字母表示矩阵,小写字母表示向量。加法和标量乘法矩阵向量乘法矩阵乘法...原创 2018-11-19 15:33:19 · 315 阅读 · 1 评论 -
机器学习(四)——多变量回归
多功能之前探讨了单变量/特征的回归模型,现在我们对房价模型增加更多的特征,构成一个含有多个变量的模型,模型中的特征为(x1,x2,…,xn)。符号定义:n代表特征的数量x表示输入变量(或者特征),y表示输出变量(预测的目标变量),x^(i)表示第 i个训练实例,是特征矩阵中的第i行,是一个向量(vector)。xj^(i)代表特征矩阵中第 i行的第 j个特征,也就是第 i个训练...原创 2018-11-19 20:27:27 · 6423 阅读 · 0 评论 -
机器学习(一)——初识篇—什么是机器学习?
机器学习是目前最激动人心的技术之一。我们每天都会多次用到学习算法,例如每当我们使用Google或Bing等搜索引擎时,它能给出如此满意的结果,原因之一就是Google或微软使用的学习算法学会了如何给网页排序。原创 2018-11-18 12:19:44 · 393 阅读 · 0 评论 -
机器学习(五)——Octave/Matlab
基本操作移动数据原创 2018-11-23 14:33:15 · 280 阅读 · 0 评论 -
机器学习(六)——Logistic回归(分类算法)
分类逻辑回归算法是分类算法,它适用于标签 y取值离散的情况。对于分类,Y是0或1,如果使用线性回归,假设hθ(x)的输出值会远大于1或小于0,这样的结果会有些奇怪。于是,考虑造特殊函数使0=<hθ(x)<=1,也就是使用Logistic回归的方法。假设陈述我们引入一个新的模型,逻辑回归,该模型的输出变量范围始终在0和1之间。逻辑回归模型的假设是: X代表特征向量,g代表逻...原创 2018-11-26 19:38:46 · 729 阅读 · 0 评论 -
机器学习中的相似性度量方法
1.欧氏距离(Euclidean Distance)欧式距离全称是欧几里距离,源自欧式空间中两点间的距离公式。1.平面空间内两点a(x1,y1),b(x2,y2)的欧式距离为:2.三维空间里的欧氏距离2.马氏距离(Mahalanobis Distance)基础知识1.方差:方差是标准差的平方,而标准差的意义是数据集中各个点到均值点距离的平均值。反应的是数据的离散程度。2.协方差:...原创 2019-05-14 16:40:24 · 1262 阅读 · 0 评论