在Python中,pandas是基于NumPy数组构建的,使数据预处理、清洗、分析工作变得更快更简单。pandas是专门为处理表格和混杂数据设计的,而NumPy更适合处理统一的数值数组数据。
使用下面格式约定,引入pandas包:
作者:无味之味
链接:https://www.jianshu.com/p/840ba135df30
来源:简书
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
import pandas as pd #引入pandas包
import numpy as np#引入numpy包
s1=pd.Series([2,3,4],index=[‘A’,‘B’,‘C’]) #表示一系列行或列,index表示行名字
print(s1)
df=pd.DataFrame([[1,2,4],[3,4,5]]) #表示
print(df)
df=pd.DataFrame([[1,2,4],[3,4,5]],index=[‘First’,‘Second’],columns=[‘A’,‘B’,‘C’]) #index表示行,columns表示列,前面是对应的每条数据
print(df)
firstcol=df[‘A’] #表示A列的数据
print(type(firstcol))
print(firstcol)
firstcol=df[[‘A’,‘B’]] #表示A列和B列的数据
print(firstcol)
firtrow=df.loc[‘First’] #loc表示行数据
print(firtrow)
firtrow=df.loc[[‘First’,‘Second’]] #loc表示行数据,其中数据表示第一行和第二行,注意中括号
print(firtrow)
firtrow=df.loc[‘First’,[‘B’,‘C’]] #表示First行中的B,C列的数据
print(firtrow)
df.to_excel(‘D:/trywrite.xlsx’) #表示存储到对应的路径以excel表格的形式
df2=pd.read_excel(‘D:/trywrite.xlsx’) #读取excel表格
print(df2)