Pandas

本文介绍了如何在Python中使用pandas库进行数据预处理、清洗和分析,包括Series和DataFrame的基本操作,如创建、索引、切片和数据存储。重点展示了pandas与NumPy的区别,并通过实例演示了数据提取和Excel文件的读写。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在Python中,pandas是基于NumPy数组构建的,使数据预处理、清洗、分析工作变得更快更简单。pandas是专门为处理表格和混杂数据设计的,而NumPy更适合处理统一的数值数组数据。
使用下面格式约定,引入pandas包:

作者:无味之味
链接:https://www.jianshu.com/p/840ba135df30
来源:简书
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

import pandas as pd     #引入pandas包
import numpy as np#引入numpy包

s1=pd.Series([2,3,4],index=[‘A’,‘B’,‘C’]) #表示一系列行或列,index表示行名字
print(s1)在这里插入图片描述
df=pd.DataFrame([[1,2,4],[3,4,5]]) #表示
print(df)
在这里插入图片描述
df=pd.DataFrame([[1,2,4],[3,4,5]],index=[‘First’,‘Second’],columns=[‘A’,‘B’,‘C’]) #index表示行,columns表示列,前面是对应的每条数据
print(df)
在这里插入图片描述
firstcol=df[‘A’] #表示A列的数据
print(type(firstcol))
print(firstcol)
在这里插入图片描述
firstcol=df[[‘A’,‘B’]] #表示A列和B列的数据
print(firstcol)
在这里插入图片描述
firtrow=df.loc[‘First’] #loc表示行数据
print(firtrow)
在这里插入图片描述
firtrow=df.loc[[‘First’,‘Second’]] #loc表示行数据,其中数据表示第一行和第二行,注意中括号
print(firtrow)
在这里插入图片描述
firtrow=df.loc[‘First’,[‘B’,‘C’]] #表示First行中的B,C列的数据
print(firtrow)
在这里插入图片描述
df.to_excel(‘D:/trywrite.xlsx’) #表示存储到对应的路径以excel表格的形式

df2=pd.read_excel(‘D:/trywrite.xlsx’) #读取excel表格
print(df2)
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值